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Timing is critical to most forms of learning, behavior, and sensory-motor processing. Converging evidence
supports the notion that, precisely because of its importance across a wide range of brain functions, timing
relies on intrinsic and general properties of neurons and neural circuits; that is, the brain uses its natural
cellular and network dynamics to solve a diversity of temporal computations. Many circuits have been shown
to encode elapsed time in dynamically changing patterns of neural activity—so-called population clocks. But
temporal processing encompasses a wide range of different computations, and just as there are different
circuits and mechanisms underlying computations about space, there are a multitude of circuits and mech-
anisms underlying the ability to tell time and generate temporal patterns.
The office of this faculty is to mark the passage of time,

duration, succession of events, etc. It also remembers

dates, keeps correct time in music and dancing, and in-

duces to punctuality in the fulfillment of engagements.—

Charles H. Olin (Phrenology: How to Tell Your Own and

Your Friend’s Character from the Shape of the Head)

Introduction
The above quote from a phrenology text from the 19th century

describes the functions of the ‘‘time organ’’ within the brain

(Olin, 1910). This phrenological view, in which a highly special-

ized area is responsible for timing in all its shapes and forms,

captures an extreme version of the notion of a master clock.

A less extreme form of the master clock theory influenced

research on timing late into 20th century. For example, Aschoff

(1985) asked whether the prolonged isolation from external

cues that alters the period of the circadian clock also affected

the ability of humans to time intervals on the order of seconds.

His results did not reveal any relationship between timing on

the scale of seconds and days. Other experiments, however,

suggested such a link; for example, it was reported that the

circadian clock gene period alters the timing of the courtship

songs in fruit flies (Kyriacou and Hall, 1980, 1986). These exper-

iments have not been replicated (Stern, 2014), and studies in ro-

dents have confirmed the lack of any direct relationship between

circadian timing and interval timing on the scale of seconds

(Lewis et al., 2003; Cordes and Gallistel, 2008; Papachristos

et al., 2011)—of course, because the circadian rhythms modu-

late a wide variety of cognitive and physiological functions, it

can affect performance on a wide range of tasks, including

timing tasks (Golombek et al., 2014).

We now understand that the brain has fundamentally different

mechanisms in place to tell time across different scales. For

example, the transcription-translation autoregulatory feedback

loops that implement the circadian clock are entirely indepen-

dent of the timing mechanisms responsible for the detection of
interaural delays on the scale of microseconds. These mecha-

nisms, which operate on the extreme ranges of biological timing,

are relatively well understood. In contrast, the mechanisms un-

derlying timing on the intermediate scale of tens of milliseconds

to tens of seconds remains a mystery. It is this temporal scale

that is the focus of the current review.

Tens of Milliseconds to Tens of Seconds

The ability to tell time, discriminate temporal patterns, and pro-

duce appropriately timed motor responses on the scale of milli-

seconds to seconds is critical to many, if not most, forms of

learning and behavior. For example, on the sensory side many

animals use interval, duration, and the overall temporal structure

of vocalization elements to communicate. On the motor side, the

brain must generate highly complex and well-timed motor pat-

terns in order to capture prey or play a musical instrument.

Furthermore, animals are able to anticipate when events will

occur and adjust their behavior appropriately: rodents will antic-

ipate a reward onset by licking, and humans anticipate when a

traffic light will change to green by shifting their focus to the light.

Timing on the scale of tens of milliseconds to a few seconds, in

particular, is unique in that it extends far beyond the need to time

simple isolated intervals or durations. It allows for the recognition

andgenerationof complex temporal patterns that cannotbechar-

acterized by the duration of any one element. For example,Morse

code reduces communication to a purely temporal code, in which

information is basedon not only identification of the duration of in-

dividual elements (‘‘dots’’ versus ‘‘dashes’’), but the overall global

temporal structure of sequences of tones and pauses. Similarly,

speech and music rely on the on the ability to recognize the

higher-order temporal structure of sequences of notes on the

scale of tens of milliseconds to a few seconds, and outside this

range the ability to detect prosody or rhythm is lost—if a musical

piece is slowed or sped up too much, it ceases to be music.

Time and Space

Many theories and models have been proposed to account for

timing (see Ivry and Spencer, 2004; Mauk and Buonomano,
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Figure 1. Taxonomy of Timing Tasks
The continuum along at least two task dimensions are likely to be important for
understanding the neural basis of timing: sensory versus motor and interval
versus pattern timing. Some tasks (Interval Timing) require the discrimination
(Sensory Timing) or production (Motor Timing) of simple durations or intervals
(or anticipation of an external event). Other tasks (Pattern Timing) require the
discrimination or production of complex temporal or spatiotemporal pat-
terns—such as deciphering Morse code signals (Sensory timing) or tapping a
complex temporal pattern (Motor Timing). Upper left: adapted from Gouvêa
et al. (2015). Lower left: adapted from Kawai et al. (2015).
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2004; Buhusi and Meck, 2006; Coull et al., 2011; Merchant et al.,

2013). Overall, these models loosely fit into two broad classes:

dedicated and intrinsic models (Ivry and Schlerf, 2008). Dedi-

cated models propose that the brain has a more or less central-

ized set of circuits for timing that account for timing across mo-

dalities, tasks, and scales within the range of hundreds of

milliseconds to many seconds. In these models, timing relies

on dedicated or specialized neural mechanisms. Intrinsicmodels

propose that timing is an intrinsic computation ofmost neural cir-

cuits, and timing per se emerges from general properties of neu-

rons and the inherent dynamics of neural circuits.

Here, we argue that converging data strongly support intrinsic

models. Indeed, we suggest that given the importance and

universality of temporal computations, dedicated models would

not make computational sense. This does not imply that there

are not some brain areas involved in a range of temporal tasks

that share similar temporal processing requirements, but rather

that distinct temporal computations, such as processing a

Morse code message and anticipating when a traffic light will

change, rely on distinct circuits and mechanisms. Under this

view, areas that are consistently implicated in timing tasks

should not be thought of as a central clock, but as areas that

are involved in tasks that are inherently temporal in nature—

e.g., since preparing and producing motor responses are inher-

ently temporal in nature, motor areas should be consistently

implicated in timing.

How the brain processes information about space provides a

useful analogy for the intrinsic timing perspective. Like the tem-

poral dimension, the spatial dimension permeates much of what

the brainmust accomplish, from localizing the position of objects

in space, to guiding movements to grasp objects, and creating

large-scale maps for spatial navigation. Mammals have many

different maps of external space, including those in the colliculi,

auditory cortex, visual cortex, hippocampus, and parietal cortex
688 Neuron 98, May 16, 2018
(Knudsen et al., 1987; Kandel et al., 2013). The multitude of

spatial representations within the brain can map onto each other

and form more general polymodal maps in the parietal cortex.

Furthermore, consistent with the intrinsic perspective of timing,

different maps of external space are computed in different

ways and make distinct contributions to sensori-motor process-

ing and cognition.

The Taxonomy of Time

Scientific advances sometimes rely not on a specific discovery

or technical innovation, but on the clarity provided by the

appropriate classification of the phenomenon being studied.

For example, a critical breakthrough in the learning and mem-

ory field was the distinction between implicit and explicit

memory, and the understanding that memory is not a unitary

process—i.e., different forms of memory rely on different cir-

cuits and mechanisms (Squire, 1986). It is increasingly recog-

nized that a major challenge in the timing field is to establish

the correct taxonomy of time (Meck and Ivry, 2016). That is,

to determine which of the many different forms of timing rely

on the same circuits and mechanisms.

As a first step toward a taxonomy of time, it is critical to

distinguish between true timing tasks and time-dependent

tasks. Timing tasks refer to those that are directly based on in-

terval or duration and that require some sort of timing device to

solve. In contrast, some tasks are defined by their temporal

properties but are not considered timing tasks, such as judging

whether two sensory events occur simultaneously or not (asyn-

chrony tasks) or which of two events came first (temporal-order

tasks). These tasks do not require a clock or timing device to

solve. Standard examples of timing tasks include (Gron-

din, 2010):

Interval/duration discrimination. discriminating which of two

presented durations (or intervals) is the longest, or making a

judgment as to whether an event is short or long relative to a

standard (e.g., bisection task).

Reproduction. reproducing the duration or temporal structure

of a presented sensory stimulus—e.g., tapping an interval

demarcated by two tones or reproducing the complex temporal

structure of a presented Morse code pattern.

Production. production of a simple or complex temporal

pattern in the absence of any recent sensory presentation of

the relevant interval or pattern—e.g., human subjects asked to

press a key for ‘‘1 second,’’ or a rodent that produces a timed

anticipatory motor response (e.g., an eyeblink that precedes

the US, or licking in anticipation of a predicted reward).

Each of the above categories encompasses a large number

of different tasks that vary across sensory modality, temporal

scale, and the temporal characteristics of the sensory or

motor pattern. And they do not necessarily comprise a

taxonomy of time because they provide few insights into

which rely on similar underlying neural mechanisms and cir-

cuits. While the establishment of a taxonomy of time remains

a major objective of the timing field, there is some consensus

as to key dimensions that are likely to be critical to the forma-

tion of a taxonomy of time. Here, we highlight three dimen-

sions: (1) subsecond versus suprasecond timing; (2) interval

versus pattern timing; (3) sensory versus motor timing

(Figure 1).
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Subsecond versus Suprasecond Timing. There is ample evi-

dence that timing of very short and very long intervals relies on

different mechanisms and areas; however, there is no clear

boundary between what constitutes a short or long interval.

Nevertheless, a loose distinction between sub- and supra-sec-

ond timing is often made. Pharmacological (Rammsayer and Vo-

gel, 1992; Rammsayer, 1999), psychophysical (Karmarkar and

Buonomano, 2007; Spencer et al., 2009; Rammsayer et al.,

2015), and imaging (Lewis and Miall, 2003) studies suggest

that discriminating a short interval (e.g., 50–100 ms) recruits

different circuits than the discrimination of longer (>1 s) intervals.

Interval versus Pattern Timing. Imaging studies suggest that

tasks that require the production of simple intervals or specific

patterns recruit different neural circuits (Grube et al., 2010;

Teki et al., 2011). Indeed, the distinction between simple and

complex timing seems critical because these timing tasks can

have fundamentally different computational requirements (Hardy

and Buonomano, 2016). Discriminating the duration of a single

musical note or anticipating the arrival of a reward relies on the

timing of isolated durations or intervals and can easily be solved

with timing mechanisms analogous to a stopwatch. In contrast,

recognizing the tempo of a song, the prosody of speech, or pro-

ducingMorse code are tasks that are defined by the duration and

interval of components, as well as by the overall global temporal

structure of a sequence of these components. Critically, when

such patterns are scaled in time, they can be identified as the

same pattern (a song played at different tempos is still the

same song).

Sensory and Motor Timing. Time is not a sensory modality like

vision or audition; rather, like space, time is a fundamental

dimension of sensory data. Thus, it is important to consider the

degree to which a task involves analyzing temporal relationships

present in the external world versus imposing temporal structure

onto the external world through action. To attempt to capture this

difference, we distinguish between sensory and motor timing

tasks—but emphasize that some tasks have both sensory and

motor components. Duration and interval discrimination

comprise prototypical sensory timing tasks: subjects report

whether an external stimulus was ‘‘short’’ or ‘‘long’’ by perform-

ing a motor action such as pressing one of two keys, or nose-

poking to the left or right. While these tasks require a motor

response, the decision is based on the temporal properties of

a sensory event, and the timing of the motor response is irrele-

vant. Sensory timing also includes many other distinct computa-

tions: from deciphering the temporal structure of speech and

other forms of communication to learning about the statistical

regularities between events in the environment that underlie

associative learning and prediction. Motor timing tasks, such

as motor production, require the brain to actively generate an

internally timed response or prediction—such as licking, blink-

ing, or shifting attention, at a given interval after a start cue.

The sensory versus motor dimension is, of course, a contin-

uum: while some tasks can be considered to be exclusively sen-

sory or motor in terms of the task constraints, many, perhaps

most, require timing of both sensory inputs and motor outputs

(e.g., reproduction tasks). While the distinction between sensory

and motor timing is based primarily on the characteristics of the

task, there is evidence for the involvement of distinct areas and
mechanisms in some forms of sensory and motor timing. For

example, interval- and duration-selective neurons that have

been identified in the brainstem and sensory cortices (see below)

bear the hallmarks of extraction of temporal information as

opposed to the generation of timed patterns. Below we will

use the sensory versus motor distinction to review the areas

that have been implicated in timing, yet we stress that depending

on the task and timescale in question many areas, such as the

basal ganglia, have been implicated in both sensory and motor

timing.

Models of Timing

An important step toward elucidating the neural mechanisms of

timing is the development of theories and models of how the

brain tells time and process temporal information. Models, how-

ever, differ significantly in the level of analyses they address, and

in their ability to generate experimental predictions. David Marr

distinguished between three levels of analyses: (1) a computa-

tional level that essentially defined the problem being addressed

from a computational or information processing perspective; (2)

an algorithmic level that sought to solve a problem algorithmi-

cally—that is, without regard to how the brain may actually

implement such an algorithm; and (3) an implementational level,

which, in the case of neuroscience, seeks to develop models im-

plemented at the level of synapses, neurons, and neural circuits.

The first models of timing on the scale of hundreds of millisec-

onds and secondswere pacemaker-accumulator models (Creel-

man, 1962; Treisman, 1963)—and, by far, the most influential of

these is referred to as scalar-expectancy theory (Gibbon, 1977).

Like man-made clocks, pacemaker-accumulator models postu-

lated a time-base or oscillator, and an accumulator or integrator

that essentially provides a linear readout of elapsed time. Most

pacemaker-accumulator models, however, concerned them-

selves with accounting for the behavioral data, such was

whether Weber’s law was satisfied, and not with a biological im-

plementation. Weber’s law (or the scalar property) is a general

feature of timing and represents an important benchmark for

models of timing (Gibbon, 1977). It refers to the observation

that, for example, in motor timing tasks the SD of the response

time across trials increases linearly with the mean time of the re-

sponses. While Weber’s law is robust, it is not universal, and it

generally applies to restricted temporal ranges, e.g., the Weber

fraction (s/t) can differ significantly for intervals of a few hundred

milliseconds, seconds, and tens of seconds (Lewis and Miall,

2009; Grondin, 2014).

We will focus primarily on models implemented with attention

to biological realism and supported by electrophysiological data.

In the context of sensory timing, this includes a wide range of

models that exploit the time-varying neuronal and synaptic prop-

erties to create temporal filters. In the context ofmotor timing, we

focus primarily on ramping models and population clocks.

Ramping models (e.g., Durstewitz, 2003; Simen et al., 2011;

Balci and Simen, 2016) propose that time is encoded in mono-

tonic changes in firing rate and that actions are produced

when the firing rates reaches a threshold value. Such ramping

neurons have been observed in a wide range of brain areas dur-

ing timing tasks. An alternative to encoding time in themonotonic

changes in firing rate is that the nervous system encodes time in

the dynamically changing population of neurons (population
Neuron 98, May 16, 2018 689
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clocks)—ranging from sequential chains of activity (Abeles,

1982) to complex patterns. This hypothesis, referred to as pop-

ulation clock, was first proposed in the context of the cerebellum

(Buonomano and Mauk, 1994; Mauk and Donegan, 1997), and

there is now a large amount of cumulative data supporting this

hypothesis.

Sensory Timing
As defined above, sensory timing refers to tasks in which deci-

sions are based on the temporal structure of stimuli. In humans,

a prototypical sensory timing task is interval (or duration)

discrimination, whereas in animal studies the bisection task is

often used. In a bisection task, subjects are trained to make

one choice when presented with a stimulus of a long duration,

and another choice when presented with a stimulus of a short

duration. After training, subjects undergo a procedure wherein

the majority of trials are equivalent to the training phase, but on

probe trials they are presented with stimuli of intermediate dura-

tion between the long- and short-duration standards. By fitting

psychometric curves to the probability of choice data across

the presented stimuli, it is possible to estimate the point of indif-

ference, i.e., the interval that subjects are equally likely to judge

as long and short. On probe trials, subjects are not rewarded;

thus, their categorical choices have historically been thought to

reflect the subjective similarity to the intervals that were rein-

forced during training. However, recent work suggests that,

instead of reflecting perceptual similarity between short and

long standards, the point of indifference may reflect the point

where short and long choices are of equal value to the animal

and is thus subject to factors such as the degree to which the

value of future rewards are discounted relative to immediate

ones (Kopec and Brody, 2018).

Sensory timing tasks represent the temporal equivalent of

standard ‘‘spatial’’ sensory-discrimination tasks, such as orien-

tation and pitch discrimination in the visual and auditory sensory

modalities, respectively. Our understanding of the neural mech-

anisms underlying spatial processing and pattern recognition

have benefited immensely from (1) studies of perceptual learning

that significantly constrain the location and mechanisms of

spatial pattern discrimination; and (2) identification of neurons

that respond selectivity to specific spatial patterns, and how

neural tuning changes with learning (Buonomano and Merze-

nich, 1998; Karmarkar and Dan, 2006; Gilbert et al., 2009).

Thus, in this section we first address (1) whether sensory timing

undergoes perceptual learning; (2) evidence that neurons in

some early brain areas are tuned to the interval and duration of

sensory stimuli; and (3) the areas of the brain that have been

implicated in sensory timing. Last, we review models of sensory

timing.

Temporal Perceptual Learning

While interval discrimination studies have been performed in hu-

mans for over 100 years (Mehner, 1885), it was not until the 90s

that the question of whether interval discrimination thresholds

improve with practice was systematically addressed. Although

some studies demonstrated that musicians are superior at inter-

val discrimination (Keele et al., 1985), other studies suggested in-

terval timing does not improve with practice (Rammsayer, 1994).

Subsequent studies, however, revealed that interval learning
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undergoes robust learning—however, unlike some forms of

perceptual learning, temporal perceptual learning is relatively

slow and requires training across days (for a review, see Bueti

and Buonomano, 2014). One of the first studies to demonstrate

temporal perceptual learning revealed that, after training sub-

jects for 1 hr a day for 10 days, interval discrimination thresholds

for a 100-ms interval improved from 24% to 12% (Wright et al.,

1997). Importantly, despite the significant learning on the trained

100-ms interval, there was no detectable improvement on un-

trained 50-, 200-, and 500-ms intervals. This temporal specificity

of temporal perceptual learning has been replicated in many

studies and is now seen as a general characteristic of temporal

perceptual learning (Nagarajan et al., 1998; Karmarkar and Buo-

nomano, 2003; Buonomano et al., 2009; Wright et al., 2010;

Bueti et al., 2012). Temporal specificity during interval-discrim-

ination tasks constrain the neural mechanisms and models un-

derlying sensory timing and argue against the notion of a single

master clock. Specifically, if the overall precision of a clock

improved with practice, it would be expected to enhance

performance across a range of intervals, not just the trained

interval. Another critical question relates to ‘‘spatial’’ general-

ization of temporal learning—e.g., after training on a 100-ms

interval demarcated by brief 1-kHz tones, do humans improve

on their ability to discriminate that same interval now bounded

by 4-kHz tone? Interestingly, most studies have reported

robust spatial generalization, but the interpretation of this

finding is complicated by the fact that spatial generalization

lags temporal perceptual learning—suggesting that generaliza-

tion to different tones may result from top-down mechanisms

independent of the timing mechanisms per se (Wright

et al., 2010).

Interval- and Duration-Selective Neurons

It is well established that discrimination and learning of spatial

patterns relies in part on the selectivity of neurons to the spatial

structure of sensory inputs (Karmarkar and Dan, 2006; Gilbert

et al., 2009; Froemke et al., 2013)—such as orientation or fre-

quency-tuned neurons in V1 and A1, respectively. Although

less common, neurons that respond selectively to interval or

duration on the order of tens-to-hundreds of milliseconds have

been identified in numerous brain areas.

Many forms of animal communication rely on temporal pattern

recognition on the scale of tens to hundreds of milliseconds. In-

sects, frogs, fish, birds, and mammals have the ability to detect

specific temporal patterns in sensory input as a means of intra-

species communication. And this ability relies in part on neurons

that are tuned to the relevant temporal features of the vocaliza-

tions. Neurons in the torus semicircularis (TS) of frogs, for

example, display variable tuning for ethologically relevant tem-

poral features of either experimentally generated or natural calls

(Elliott et al., 2011; Rose, 2014). Interval- and rate-tuned neurons

have also been identified in the brainstem of weakly electric fish

that use the temporal features of discharge from their electric

organs to communicate (Figure 2A) (Carlson, 2009). The mecha-

nism underlying temporal tuning in these cases is not fully under-

stood, but it has been established that selectivity relies in part on

dynamic changes in the balance of excitation and inhibition

imposed by temporal summation and short-term synaptic plas-

ticity (see below).



Figure 2. Example of Interval-Tuned Neurons
(A) Voltage traces from a neuron in the midbrain of an electric fish to trains of
electrical pulses presented at intervals of 100 (left), 50 (center), and 10 ms
(right). The rows represent three separate repetitions of each train. This neuron
was tuned to pulses delivered at intervals of 50 ms (right). Adapted from
Carlson (2009).
(B) Rastergram of a neuron from rat auditory cortex in response to five different
stimuli, each composed of a 200-ms 3-kHz tone followed by a 50-ms 7-kHz
(characteristic frequency [CF]) tone with different stimulus-onset asyn-
chronies. Numbers represent the facilitation index. Rats were trained to detect
an interval of 100 ms between both tones (red arrow), and this was the
spatiotemporal pattern that elicited the maximal response across the popu-
lation (right). Error bars represent SEMs. Adapted from Zhou et al. (2010).
(C) Model of how STP can generate an interval selective neuron in a disynaptic
circuit composed of an excitatory (blue) and inhibitory (red) neuron (traces from
three intervals are overlaid). Left, the input to both neurons exhibits paired-
pulse facilitation. Right, by adjusting the weights onto both the Ex and Inh
neurons, it is possible to create an Ex neuron that functions as a 50-, 100-, or
200-ms detector. Adapted from Buonomano (2000).
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Temporally selective neurons have also been identified in the

corticalcircuitsofbirdsandmammals. Indeed, someof thefirstex-

amples of temporally selective neuronswere described in the sen-

sori-motor area HVC of zebra finches. Some HVC neurons are

tuned to the interval between two tones, responding optimally to

specific intertone intervals in the range of tens to hundreds of mil-

liseconds (Margoliash, 1983). Other studies in song birds have

confirmed the presence of neurons that are sensitive to a diverse

arrayof temporalandspatiotemporal sensory features (Margoliash

and Fortune, 1992; Lewicki and Konishi, 1995; Doupe, 1997).

In themammalian cortex, studies have identified auditory neu-

rons that are sensitive to the interval and duration of tones, as
well as the overall spatiotemporal structure of auditory stimuli

(He et al., 1997; Brosch and Schreiner, 2000; Sadagopan and

Wang, 2009; Zhou et al., 2010). And duration-sensitive neurons

have also been identified in V1 (Duysens et al., 1996). Impor-

tantly, as is the case with spatial perceptual learning, there is

some evidence that the presence of temporally selective neu-

rons is modulated by experience. In one study (Zhou et al.,

2010), rats were trained to nose-poke in response to a 3-kHz

tone followed by a 7-kHz tone with a 300-ms stimulus-onset

asynchrony. After weeks of training, recordings in A1 revealed

a bias toward the spectral and temporal features of the target

stimulus. For example, Figure 2B shows a neuron that re-

sponded moderately to a brief 7-kHz tone; however, the

response to the 7-kHz tone was facilitated by over 100% when

it followed the 3-kHz tone by 300 ms, importantly in this neuron

(and across the population) this facilitation was temporally tuned.

In contrast to the ordered topographicmaps underlying spatial

tuning, there have been few reports of chronotopic maps in sen-

sory cortices. Nevertheless, there seems to be a sparse repre-

sentation of temporal features in sensory cortices, as revealed

by the presence of temporally selective neurons. It is reasonable

to hypothesize that these neurons contribute to sensory timing in

the tens-to-hundreds of milliseconds range (but see Pai et al.,

2011). Furthermore, similarly to spatial perceptual tasks, there

is significant evidence from animal (Kilgard and Merzenich,

2002; Yin et al., 2008; Zhou et al., 2010) and human (vanWassen-

hove and Nagarajan, 2007; Bueti et al., 2012) studies that

perceptual learning of temporal stimuli in the tens-to-hundreds

of milliseconds range rely on cortical plasticity.

Basal Ganglia

The basal ganglia (BG), a collection of subcortical nuclei that

receive input from almost the entire cortical mantle as well as

multiple thalamic areas, are often implicated in sensory and mo-

tor timing on the scale of hundreds of milliseconds to seconds.

This is perhaps not surprising given that the BG contribute to

reinforcement learning—forming predictions about future

reward and selecting actions that lead to rewarding outcomes.

A fundamental aspect of learning to predict something is the

ability to detect temporal contingencies (Balsam and Gallistel,

2009), the degree to which some event or action reduces uncer-

tainty about another, and there is behavioral evidence that

animals represent the temporal statistics of events required for

performing probabilistic inference thought to underlie this

manner of associative learning (Kheifets and Gallistel, 2012;

Li and Dudman, 2013). In addition, execution of behavior often

involves proper timing and sequencing of action. Thus, the BG

should at the very least have access to representations of timing

information for both learning predictions and producing proper

behavior. Evidence for BG involvement in timing comes from a

variety of sources, including disease states, lesions, and phar-

macological or genetic manipulations that affect BG functioning

as well as functional neuroimaging and neurophysiology. Here,

wewill briefly discuss the evidence that the BG contribute to sen-

sory timing and provide a more detailed discussion of the role of

the BG in timing in the Motor Timing section.

While the BG have predominantly been studied in the context

of what would fall under motor timing tasks, there is significant

evidence that BG are involved in sensory timing. For example,
Neuron 98, May 16, 2018 691



Figure 3. Midbrain Dopamine Neurons and
Striatal Dynamics May Interact to Regulate
Timing
(A) The speed with which striatal ensembles tra-
verse neural space (top panel) predicts duration
judgments (lower panel) in an interval-discrimina-
tion task. Colored schematic trajectories in top
panel depict a quickly (red) or slowly (blue) evolving
ensemble activity pattern during interval presen-
tation in a space defined by the firing of simulta-
neously recorded striatal neurons. Psychometric
curves for trials segregated on the basis of whether
activity proceeded quickly or slowly during interval
presentation. Adapted from Gouvêa et al. (2015).
(B) Calcium signals collected from dopamine
neurons in the SNc exhibited trial-to-trial variability
during interval presentations (top panel) that pre-
dicted the timing judgments of mice during the
same interval-discrimination task used during the
data collected in (A) (adapted from Soares et al.,
2016). Given the dense innervation of striatal net-
works (in black, center) by nigro-striatal dopamine
neurons (in purple, center) and the fact that SNc
dopamine neurons receive significant input from
striatum, these data support a hypothesis where
the two brain areas reciprocally influence each
other’s timing functions.
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multiple fMRI studies have described significant activation of the

human striatumduring an interval categorization taskwhere sub-

jects were trained to categorize intervals as longer or shorter

than a cued decision boundary as compared to a control task

(Rao et al., 2001; Pouthas et al., 2005). In addition, in monkeys

trained to perform a duration comparison between two sequen-

tially presented intervals, information related to both the categor-

ical decision—was the current interval longer or shorter than the

previously presented interval—and the elapsed time within an

interval was encoded in the firing of neurons in the striatum

(Chiba et al., 2015).

One piece of evidence that the BGplay a causal role in sensory

timing is data showing that inactivation via infusion of muscimol

into the rat dorsal striatum impairs performance of a interval

categorization task (Gouvêa et al., 2015). Recordings from single

units around the site of muscimol infusions revealed rich and

variable dynamics that, when viewed at the population level,

encoded information about elapsed time during interval presen-

tation. Furthermore, the timing information derived from simulta-

neously recorded ensembles of striatal neurons predicted the

trial-to-trial variation in duration judgments produced by the an-

imals (Figure 3). When population dynamics proceeded more

quickly, rats were more likely to judge a given interval as being

in the ‘‘long’’ category, and vice versa when population dy-

namics proceeded more slowly, indicating that striatal dynamics

reflected the timing information that rats were using to guide their

judgments (Gouvêa et al., 2015). These data demonstrate that

the striatum was required, and striatal populations encoded in-

formation, for guiding what we would define as a sensory timing

task. That said, it is possible that animals develop a motor strat-

egy for solving this type of task. For example, animalsmight learn

that reward is available to the left up to some state as a motor

pattern is produced. Indeed, pigeons, mice, and rats have all

been observed to initially move toward the location where a short

categorical choice is reported and then move toward the loca-

tion where a long categorical choice is reported as time elapses
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past the decision boundary in temporal discrimination para-

digms (Machado and Keen, 2003; Gouvêa et al., 2014). Such ob-

servations have been interpreted as evidence that animals use

embodied solutions to solve sensory timing tasks (Killeen and

Fetterman, 1988; Machado et al., 2009). However, comparing

simultaneously recorded high-speed video and neural popula-

tion activity revealed a clear asymmetry between when timing in-

formation appeared in neural activity and behavior, with neural

activity leading behavior by �300 ms (Gouvêa et al., 2015).

Thus, while time encoding by striatal neurons likely carries infor-

mation about a plan for future action, it is unlikely to represent

motor commands on their way out of the CNS, nor could it solely

reflect the sensory consequences of action.

Mechanisms and Models of Sensory Timing

Computational models of timing have not generally explicitly

distinguished between sensory and motor timing. We argue

that such a distinction is important, because the temporally se-

lective neurons in the brainstem and sensory cortex seem to

behave as temporal filters as opposed to timers, and are unlikely

to be directly responsible for the production of timed motor pat-

terns. Mechanistically, we can think of the sensory and motor

timing distinction as relying on passive versus active neural

mechanisms, respectively. Passive neural mechanisms refer to

those that react to the temporal structure of stimuli, but that

are incapable of actively generating a timed response. A proto-

typical example of a passive mechanism is a band-pass tem-

poral filter, which gates the information arriving at certain

frequencies, but cannot actively produce a timed response. In

contrast, motor and implicit timing require a circuit to actively

generate a timed signal. We stress, however, that, while the

distinction between sensory and motor timing is important,

they can be overlapping, and indeed many models of motor

timing can account for simple sensory timing (such as interval

and duration discrimination).

Models of sensory timing have typically relied on the temporal

characteristic of neurons and synapses to implement time
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delays or temporal filters. Axonal time delays that contribute to

the detection of interaural time delays in the range of tens of mi-

croseconds were among the first example of models of sensory

timing (Jeffress, 1948). Later models attempted to extend these

axonal delay line models to the range of tens to hundreds of mil-

liseconds by proposing that the parallel fibers of cerebellar

granule cells may function as delay lines on the order of tens-

to-hundreds of milliseconds (Braitenberg, 1967). Today there is

little experimental support for the notion that axonal (or dendritic)

delay lines contribute to timing at intervals above tens ofmillisec-

onds. But as we will see next, it is clear that the brain uses many

other well-described neural and synaptic properties to imple-

ment temporal filters and solve some sensory timing problems.

Temporal Selectivity Based on Changes in the Excitatory-Inhibi-

tory Balance. Much of the sensory timing required for animal

communication—ranging from the interval and rate codes of in-

sects and frogs to the complex vocalizations of birds and

humans—takes place on the timescale of tens-to-hundreds of

milliseconds. It is probably not coincidental that this is the range

of the time constants of the vast majority of neuronal and synap-

tic properties, including the kinetics of K+ and Ca2+ channels fast

(tens of milliseconds) ionotropic and slower (hundreds of

milliseconds) metabotropic receptors (e.g., GABAB and NMDA

receptors), and short-term synaptic plasticity. Together these

neuronal and synaptic properties provide a rich palette to

generate neurons that are selective to the interval, duration,

or temporal structure of sensory stimuli. Indeed, there is

converging evidence across numerous systems that the tempo-

rally selective neurons reported in crickets, frogs, electric fish,

bats, and rodents rely on dynamic shifts in the balance of excita-

tion and inhibition produced by time-varying cellular and

synaptic properties such as inhibition, rebound excitation, and

short-term synaptic plasticity (Edwards et al., 2007; Aubie

et al., 2009; Elliott et al., 2011; Kostarakos and Hedwig, 2012;

Baker and Carlson, 2014; Rose, 2014; Goel and Buono-

mano, 2016).

Early models of duration selectivity in frogs and bats relied on

coincidence arrival of a delayed excitatory input with the input

generated by stimulus offset (Narins and Capranica, 1980; Sulli-

van, 1982; Saitoh and Suga, 1995; Aubie et al., 2009). Some of

these early models relied on rebound excitation produced by

the offset of inhibition. For example, interval selectivity to a

50-ms tone could result from stimulus onset triggering inhibition

that produced rebound excitation at 50 ms, and when this

rebound coincided with a subthreshold input produced by tone

offset a spike would be generated. There is evidence that the

temporally tuned neurons of the cricket rely on the convergence

of delayed events imposed by rebound excitation and non-de-

layed inputs arising from a second sensory event (Kostarakos

and Hedwig, 2012). And there is significant experimental evi-

dence that duration-selective neurons in the inferior colliculus

rely on a combination of mechanisms relating to the duration

of inhibitory postsynaptic potentials (IPSPs) and rebound excita-

tion (Covey and Casseday, 1999; Pérez-González et al., 2006;

Aubie et al., 2009, 2012). More speculative models of interval

and duration selectivity have focused on the filtering properties

based on the time constants of K+ channels (Hooper et al.,

2002) or metabotropic glutamate receptors (Fiala et al., 1996).
Other models have proposed that short-term synaptic plas-

ticity contributes to the formation of temporally selective neurons

(Buonomano and Merzenich, 1995; Buonomano, 2000; Fortune

and Rose, 2001). Short-term synaptic plasticity refers to a form

of use-dependent synaptic plasticity in which the strength of

an excitatory postsynaptic potential (EPSP) (or IPSP) can

decrease (short-term depression) or facilitate (short-term facili-

tation) in response to a sequence of consecutive presynaptic

spikes (Zucker and Regehr, 2002). For example, at cortical syn-

apses that exhibit short-term facilitation (most exhibit depres-

sion), the second of a pair of EPSPs separated by 100 ms might

be 25% larger than the first (Reyes and Sakmann, 1999)—this

facilitation typically decays with time constant on the order of a

few hundred milliseconds.

Figure 2C demonstrates how a simple disynaptic circuit

composed of synapses that exhibit short-term facilitation can

account for interval selectivity over a range of tens-to-hundreds

of milliseconds. The circuit is composed of a single input, and an

excitatory and inhibitory neuron—this disynaptic circuit com-

prises a virtually universal microcircuit architecture throughout

the mammalian nervous system. We can see that if both the

excitatory and inhibitory neurons receive input from synapses

with short-term facilitation, one can create an interval selective

neuron by adjusting the input weights. For example, let’s assume

the strength of the input synapse to the excitatory neuron is

suprathreshold for the 50- and 100-ms interval and suprathres-

hold for the inhibitory neuron only at 50 ms, then the excitatory

neuron can function as a 100-ms detector because the second

potentially suprathreshold EPSP of the 50-ms interval can be ve-

toed by activity in the inhibitory neuron. By parametrically varying

theweights of both synapses it is possible to create a neuron that

response selectively to the 50-, 100-, or 200-ms intervals, or

combinations of these intervals (Buonomano, 2000).

The interplay between short-term plasticity at excitatory and

inhibitory synapses creates a flexible set of mechanisms to

govern the temporal selectivity of neurons. Indeed, there is

significant experimental support for the notion that the time-

dependent shifts in the balance of excitation and inhibition

produced by short-term plasticity (STP) contribute to temporal

selectivity in electric fish and frogs (Carlson, 2009; Elliott et al.,

2011; Rose, 2014).

State-Dependent Networks. The above examples demon-

strate how time-varying neural and synaptic properties, such

as rebound excitation and STP, can underlie interval and dura-

tion selectivity in simple circuits. Much more general and power-

ful computational models have been put forth to account for how

cortical circuits might respond selectively to the spatiotemporal

structure of complex stimuli such as spoken words, as well as in-

tervals and durations. These interrelated models go by various

names including, state-dependent networks (SDNs) and liquid-

state machines (Buonomano and Merzenich, 1995; Maass

et al., 2002; Buonomano and Maass, 2009). Conceptually, the

SDN model proposes that the response of a population of neu-

rons at anymoment in time is intrinsically dependent on the inter-

action between the current input and the current state of the

network (i.e., the context imposed by the previous sensory

events). The internal state in turn is defined not only by which

neurons are currently firing (the active state), but by the suite of
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time-dependent neural properties discussed above (referred to

as the hidden state)—such aswhich synapses are currently facil-

itated or depressed state. If we imagine an interval defined by

two tones separated by 100 ms, the first and second tone may

activate the same population of input fibers, but the population

of neurons activated by the first and second tone should be

different because the second tone will arrive when the network

is in a different state: e.g., the strength of some excitatory and

inhibitory synapses (the hidden state) during the first and second

tone should be different; thus, some neurons should respond

differentially (Buonomano and Merzenich, 1995; Buonomano,

2000; Pérez and Merchant, 2018). As originally proposed, in

SDN models the network is inactive in the absence of any stim-

ulus—i.e., the recurrent weights are not strong enough to sup-

port self-perpetuating activity—thus, the model cannot account

for anticipatory or motor timing.

SDNs are prototypical intrinsic models of timing in that they

propose that temporal selectivity arises as an inevitable conse-

quence of the rich collection of neural and synaptic properties

with time constants on the order of tens-to-hundreds of millisec-

onds. Because each sensory event is naturally encoded in the

context of the previous events, SDN models naturally account

for the discrimination of complex temporal and spatiotemporal

patterns, such asMorse code patterns or spoken words (Buono-

mano, 2000;Maass et al., 2004; Lee and Buonomano, 2012). The

state dependency of SDN models generate the prediction that

the detection of a specific interval should be impaired if it is pre-

ceded by a distractor tone presented at unpredictable time

points (e.g., it is difficult to compare a pure 100-ms interval to

a 100-ms interval that is embedded within a more complex

sequence). This prediction and related predictions have been

validated by psychophysical (Burr et al., 2007; Karmarkar and

Buonomano, 2007; Spencer et al., 2009) and electrophysiolog-

ical studies (Nikoli�c et al., 2009).

Motor Timing
As defined above, we use the term motor timing to refer to tasks

that require an animal to actively produce a temporal pattern or

anticipate an external event. Prototypical motor tasks include

those in which animals or humans have to produce a simple in-

terval or complex motor pattern (Figure 1), as well as those in

which animals prepare or produce an anticipatory response to

an expected stimulus. Importantly, prediction and anticipation

do not only take the form of direct motor behaviors, such as

anticipatory licking or blinking, but can also take the form of tem-

poral attention. That is, much as we can focus our attention to

specific points in space during a visual detection task, we can

focus our attention in time during tasks in which a stimulus is ex-

pected to occur after a given interval. An example of a temporal

attention task (and the related phenomenon of implicit timing) is

the foreperiod task, in which a stimulus is presented at a fixed in-

terval after a warning signal. Temporal attention decreases reac-

tion time and increases performance—e.g., discrimination is

better in trials in which the stimulus occurs at the expected

time (Nobre et al., 2007; Jaramillo and Zador, 2011; Cravo

et al., 2013; Nobre and van Ede, 2018).

Because of the universal importance of the generation of com-

plex spatiotemporal motor patterns and of the ability to predict
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and prepare for external events, motor timing is critical to

many forms of learning, behavior, and cognition. Thus, it would

be surprising if all these abilities relied on a single neural circuit

or mechanism. Indeed, electrophysiological and imaging studies

have implicated a large number of brain areas in motor timing.

We first review the brain areas that have most consistently

been implicated in motor timing and then examine the neuro-

computational models of motor timing.

Basal Ganglia

The neurologist Oliver Sacks described a group of patients that

fell ill from an epidemic of encephalitis lethargica that swept the

world between 1918 and 1923 (Sacks, 1991). These patients ex-

pressed a variety of symptoms with respect to the timing of their

movements, some moving abnormally quickly, and others

abnormally slowly. More modern examinations of cases of en-

cephalitis lethargica have revealed apparent damage to BG

structures such as the striatum and midbrain dopamine neurons

that may be caused by an autoimmune response that preferen-

tially affects the BG (Dale et al., 2004). Consistent with these ob-

servations, aberrant time estimation has also been described in

those affected by Parkinson’s disease (Pastor et al., 1992; Mala-

pani et al., 1998), which is characterized by a loss of dopamine

neurons in the substantia nigra pars compacta. In fact, a range

of disorders affecting the BG including Parkinson’s disease,

Huntington’s disease (Freeman et al., 1996), Tourette’s (Vicario

et al., 2010), substance abuse (Wittmann et al., 2007), and atten-

tion deficit disorder (Noreika et al., 2013) have been associated

with altered sensation of time or temporally patterned behavior.

Last, lesions as well as pharmacological and genetic interven-

tions that affect striatal function in rodents have been shown to

cause disturbances in timing behavior (Meck, 2006; Drew

et al., 2007; Gouvêa et al., 2015; Mello et al., 2015). However,

BG activation has not always been observed during temporal

processing, and significant damage to the BG does not always

produce clear timing deficits (Coslett et al., 2010), which may

indicate either the degree of redundancy present among brain

mechanisms for timing or a special dependence on the BG for

timing processes with a motor component (Yin andMeck, 2014).

These observations broadly agree with data collected from

healthy human subjects using functional magnetic resonance

imaging (Schubotz et al., 2000; Nenadic et al., 2003), electroen-

cephalography (Pfeuty et al., 2003), and positron emission to-

mography (Jahanshahi et al., 2006), all of which have frequently

localized sensory and motor timing to circuits within or anatom-

ically connected to the BG. For example, during an interval

categorization task where subjects were trained to categorize

intervals as longer or shorter than a cued decision boundary of

either 450 or 1,300 ms, the right caudate was significantly acti-

vated as compared to a control task (Pouthas et al., 2005), irre-

spective of the cued condition, as assessed using fMRI. As in

other studies (Rao et al., 2001; Ferrandez et al., 2003), this acti-

vation was accompanied by activation in premotor cortex. While

these techniques combined with incisive behavioral task design

can allow for the localization of interval timing to different regions

of the brain, their spatial and/or temporal resolution is often too

coarse to reveal the nature of time encoding in these areas.

Electrophysiological studies in animal model organisms have

provided important clues as to how timing information is
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encoded by BG circuits. For example, in monkeys performing a

sequential saccade task, the varied response profile of striatal

neurons could be used to encode time between individual task

events (Jin et al., 2009). However, no explicit requirement to es-

timate time or to report a temporal judgment was present in this

task, leaving open the question of whether time information en-

coded by neurons would correlate with time judgments pro-

duced by the animal.

By systematically varying the temporal predictability of cues

eliciting movement, Sardo et. al (2000) were able to measure

differences in reaction time that reflected monkeys temporal

expectations of a stimulus. When tonically active neurons, pre-

sumed cholinergic interneurons, were recorded during this

behavior, a large fraction of cells modulated their cue response

depending on temporal predictability of the cue, demonstrating

that tonically active striatal neurons have access to a timing

signal (Sardo et al., 2000). Other studies have shown that infor-

mation about elapsed time is continuously available to BG cir-

cuits. GABAergic neurons in the substantia nigra of mice trained

to depress a lever for aminimum amount of time (Fan et al., 2012)

and striatal neurons recorded in rats trained to press a lever for a

reward delivered on a fixed interval reinforcement schedule (Ma-

tell et al., 2003; Mello et al., 2015), or mice trained to lick for

reward delivered after a fixed delay (Bakhurin et al., 2017), also

exhibited diverse temporal profiles that as a population encoded

information about elapsed time—that is the network imple-

mented a population clock. Interestingly, the response profiles

of many striatal neurons temporally rescaled in association

with changes in the interval between reward availability or timing

behavior (Mello et al., 2015). This suggests that the striatum may

encode information about relative as opposed to absolute time,

adapting to the relevant timescale in the current environment.

Time representations that temporally rescale may have impor-

tant implications for the learning processes that BG circuits are

thought to implement, as the temporal credit assignment

required for associative learning is thought to rely on the statis-

tics of relative, rather than absolute, timing of events in the envi-

ronment. Importantly, across multiple behavioral paradigms,

reversible inactivation of the striatum transiently reduced the

sensitivity of animal’s behavior to elapsed time (Meck, 2006;

Gouvêa et al., 2015; Mello et al., 2015; Wang et al., 2018).

Thus, it appears that the normal functioning of striatal popula-

tions is required and encodes information for guiding time-

dependent behaviors.

It is important to point out that, in many behavioral tasks,

behavior is continuously changing and non-repeating, and thus

neural responses that simply reflect ongoing behavior might be

misinterpreted as representing elapsed time. Indeed,many stria-

tal neurons respond around behavioral events. However, these

responses cannot be easily explained as simply motor in nature;

rather it is often the case that information about time and action

in multiplexed (Matell et al., 2003; Mello et al., 2015). In addition,

removing cells with responses locked to observed behaviors

does not remove all time information from striatal populations

(Bakhurin et al., 2017).

The above studies suggest a mode of time encoding by the

striatum wherein the speed with which populations of active

neurons progress through a spatiotemporal pattern of activity re-
flects the speed of an internal clock that animals use to guide

time-dependent behavior. What mechanisms might be respon-

sible for this variability in the speed of this population clock?

A recent neural network model demonstrated that sequential

neural activity can be generated using a striatum-like inhibitory

network, and that these sequences of activity across neurons

can be stretched or contracted by simply varying the magnitude

of a tonic excitatory input to the network or by varying the time-

constant of short-term synaptic depression of the synapses be-

tween striatal neurons (Murray and Escola, 2017). In the model,

tonic input is thought to originate in the thalamic or cortical inputs

to the striatum and serves to ‘‘select’’ which sequence of firing to

produce, whereas the cortical inputs act as a kind of tutor during

learning, training the striatal network to produce a particular

sequence via an anti-hebbian plasticity rule that is expressed

at recurrent synapses. This work highlights a few mechanisms

by which a kind of population clock may be instantiated and

modified by experience within BG circuitry; however, at its

core it is agnostic as to what upstream neurobiological factors

may cause changes in the parameters of short-term synaptic

plasticity or overall excitatory drive onto the network.

Midbrain dopamine neurons, in addition to encoding a reward

prediction error (Schultz et al., 1997), have been implicated in

timing (Malapani et al., 1998). These neurons project densely

to the striatum (Gerfen and Bolam, 2010) and can modify circuit

dynamics (Costa et al., 2006). For example, excitotoxic lesions of

dopaminergic input to the striatum using 6-hydroxydopamine

can render previously learned behavior insensitive to duration

(Meck, 2006), and overexpression of D2 type dopamine recep-

tors in the striatum can cause disruptions in timing behavior

(Drew et al., 2007). Interestingly, there is evidence that dopami-

nergic projections to more ventral striatum may not play a large

role in timing processes, as lesions of dopaminergic input to nu-

cleus accumbens or local infusions of drugs affecting dopamine

availability or receptor activation produce changes in the vigor of

behavior, but not its timing (Meck, 2006). However, a recent

study demonstrated that lesioning the ventral striatum in rats

could abolish signatures of a time-dependent component of

reward prediction error coding by dopamine neurons in the

ventral tegmental area, indicating that some time-dependent

computations might rely on more ventral regions in the striatum

(Takahashi et al., 2016).

The most direct assessment of the role of dopamine neurons

in time estimation comes from studies that measure and manip-

ulate dopamine neuron activity on a fast timescale during timing

behavior. During an interval categorization task, fiber photo-

metric recordings of dopamine neuron activity in the substantia

nigra pars compacta of mice revealed signals that reflected vari-

ation in internal time estimates (Soares et al., 2016). These

data were consistent with voltammetric recordings of dopamine

release in the striatum during a temporal bisection task (Howard

et al., 2017). By encoding reward prediction error, dopamine

neurons encode the degree to which an organism is surprised

by a reward, including when that surprise originates from uncer-

tainty about when a stimulus will occur (Pasquereau and Turner,

2015). However, optogenetic activation of substantia nigra pars

compacta (SNc) dopamine neurons caused underestimation,

and optogenetic inhibition of SNc dopamine neurons caused
Neuron 98, May 16, 2018 695



Neuron

Review
overestimation of interval duration, indicating that dopamine

neurons not only reflect information about estimates of elapsed

time but are capable of exerting control over those estimates

(Soares et al., 2016). Putting together the above observations,

an intriguing hypothesis emerges that dopaminergic projections

from the SNc to the striatummodify striatal population dynamics

in a manner that is linked with prediction error. When the world is

better than expected, phasic increases in dopamine neuron ac-

tivity may act to slow striatal population dynamics, either by

causing a net decrease in the excitatory drive to the striatal

network or by altering the dynamics of synaptic plasticity.

Such an effect may underlie common observations that fearful

or pleasurable experiences can have opposites effects on

perceived duration (Falk and Bindra, 1954; Gable and Poole,

2012; Fung et al., 2017). Future work involving the simultaneous

observation or manipulation of dopamine neurons while

recording from striatal populations during timing behavior will

be required to explore such hypotheses, and more generally to

understand the relationship between dopaminergic neuromodu-

lation and neural dynamics in recipient brain areas such as the

striatum.

Cerebellum

The cerebellum is one of the first structures to be implicated in

timing and hypothesized to serve as a critical structure for

many forms of timing in the subsecond range (Braitenberg,

1967; Ivry and Keele, 1989). Lesion and imaging studies suggest

the cerebellum is involved in sensory and motor timing tasks in

the subsecond range (Ivry and Keele, 1989; Spencer et al.,

2003; Grube et al., 2010; Teki et al., 2011). The most compelling

evidence for a role of the cerebellum is probably in the context of

motor timing of eyeblink conditioning. In this associative learning

paradigm, an initially neutral conditioned stimulus (CS) is repeat-

edly paired with a delayed (e.g., 50–500 ms) unconditioned stim-

ulus (US) composed of a shock or airpuff delivered to the eye of

rodents or rabbits. Subjects learn to blink in anticipation of the

US delivery as learning progresses. Lesions of the cerebellar

cortex lead to the loss of proper timing of eye closure yet do

not prevent the CS from eliciting a blink response (Perrett

et al., 1993; Kalmbach et al., 2010). Mauk and colleagues first

suggested that the diverse temporal profiles of granule cell firing

triggered by CS input can act as temporal basis for learning

proper conditioned response timing (Mauk and Donegan,

1997; Medina et al., 2000). In this model, the temporal structure

of the granule cell activity forms a population clock that emerges

from a negative feedback loop between granule and Golgi neu-

rons. Coincident input from climbing fibers originating in the infe-

rior olive that signal US delivery and input from granule cells

active at the time of US delivery onto Purkinje cells are thought

to drive long-term depression of granule cell to Purkinje cell syn-

apses. Through learning, this would lead to a decrease in granule

cell excitatory drive onto Purkinje cells (which are inhibitory)

around the time of US delivery, leading to a decrease in Purkinje

activity and downstream disinhibition the cerebellar nucleus

generating a properly timed blink. While the mechanisms under-

lying timing in the cerebellum continue to be debated, it is well

established that the cerebellum plays a role in some forms of

motor timing (Kalmbach et al., 2010; Johansson et al., 2014;

Kennedy et al., 2014).
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Related cerebellar models account for how well timed predic-

tions are formed by neural circuits. Most notably in how timed

‘‘negative images’’ of the sensory consequences of electric or-

gan discharge (EOD) in mormyid fish is learned and generated

(Kennedy et al., 2014). Again, the diverse profile of activity of

granule cells acts as a temporal basis set, the weighted combi-

nation of which can approximate the sensory consequences of

EOD alone. Interestingly, the kind of temporal basis functions

that has been ascribed to granule cell activity in the cerebellum

parallels a classical method for representing time within compu-

tational models of reinforcement learning (RL). RL models learn

predictions about future reward. Whereas the cerebellum has

been postulated to learn forward models that shape behavior

through a supervised learning process, the objectives of which

are to predict the sensory consequences of action, the BG are

thought to help learn to select actions that maximize future

reward.

Bird Song System

Studies in song birds have provided some of the clearest evi-

dence that population clocks in the form of sequential activation

of neurons underlie some forms of motor timing. The songs of

zebra finches are characterized by the temporal structure of

both individual syllables as well as of the entire sequence (Doupe

and Kuhl, 1999). And there is evidence that this temporal struc-

ture is governed by a population of neurons in area HVC; specif-

ically, the population of excitatory neurons that project to the

motor area RA have been shown to be activated in a chain-like

sequence (Figure 4D) (Hahnloser et al., 2002; Long et al., 2010;

Lynch et al., 2016). Such sequential activation could be imple-

mented by a simple feedforward connectivity; however, whole-

cell recordings reveal that these neurons also receive well-timed

subthreshold inputs at different times during the song (Long

et al., 2010), suggesting that the underlying dynamics might be

produced by a more complex recurrent architecture that results

in functionally feedforward activity.

As in other areas of the brain in which population clocks have

been observed, it is of course possible the sequential activation

of neurons in HVC does not constitute the timer per se but rather

reflects readout of a timer in upstream areas. However, the bird-

song system has allowed for experiments aimed at establishing

a causal relation between sequential neural activity and motor

timing. Specifically, it has been shown that cooling HVC uni-

formly slows song speed, whereas cooling the motor nucleus

RA does not dramatically alter song timing (Long and Fee,

2008). These experiments comprise some of the best evidence

to date of a causal link between the dynamics generated within

a local circuit and the timing of a motor behavior.

Cortical Circuits

Cortical circuits involved in the temporal control of behavior likely

span the entire spectrum from sensory cortex, to higher-order

associative areas, to motor cortex. For example, information

about the expected time of sensory events such as visual cues

has been observed in primary visual cortex of monkeys and

rats (Shuler and Bear, 2006; Sirotin and Das, 2009; Chubykin

et al., 2013; Gavornik and Bear, 2014), as has information about

the timing of impending actions (Namboodiri et al., 2015).

Furthermore, local optogenetic activation of rat visual cortex

can produce shifts toward earlier action timing (Namboodiri



Figure 4. Examples of Experimentally
Observed Neural Responses and Simulated
Models of Timing
(A) Two ramping medial frontal cortex (MFC) neu-
rons recorded during trials in which the animal
anticipated reward availability at 3 or 12 s. Adapted
from Emmons et. al. (2017).
(B) Model of an integrator that generates ramping
and that can be rescaled to time different durations
by changing the magnitude of the input. Adapted
from Balci and Simen (2016).
(C) Example of the sequential activation of neurons
in area HVC. Each line represents a burst in a
neuron (neurons that bursted more than once are
represented in different lines). The pattern drives
the timing of the zebra finch song. Adapted from
Lynch et al. (2016).
(D) Schematic of a simple feedforward network
(a synfire chain) that can implement a sparse
population clock.
(E) Example of the trial-averaged activity in simul-
taneously recorded orbito frontal cortex (OFC)
neurons in response to an olfactory cue (blue bar)
that predicts a delayed reward (red arrowhead).
Cells are sorted according to the time of the peak
firing rate. Adapted from Bakhurin et al. (2017).
(F) Simulation of a firing-rate based RNN that
generates a complex population clock. Units are
sorted according to the time of peak activity after
the end of the input (blue bar). Adapted from Laje
and Buonomano (2013).
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et al., 2015), suggesting that primary visual cortex may have a

causal role in the production of visually cued timed actions.

Relatedly, single neuron andmultiunit responses recorded in pri-

mary auditory cortex have been shown to encode information

about the timing ofmotor responses during auditory but not visu-

ally cued behavior (Brosch et al., 2005). Thus, primary sensory

cortexmay play an important role in guidingmotor timing by link-

ing modality specific sensory signals with properly timed

behavior.

At the opposite end of the sensory-motor continuum, and

perhaps less surprisingly, primary and higher motor cortical

areas have been repeatedly implicated in timed behavior. How-

ever, the specific contributions of different motor cortical regions

to timed action is not entirely clear. In one recent study, lesions of

primary motor cortex in rats trained to produce a 700-ms interval

resulted in minimal changes in motor timing when lesions were

performed in well-trained animals (Kawai et al., 2015). However,

similar lesions performed before training blocked learning of

appropriately timed behavior, suggesting that motor cortex

may be specifically involved in tutoring subcortical motor struc-

tures during learning but no longer drives execution of timed ac-

tions after learning. Results of lesioning motor cortex in animals

trained to perform a simple peak-interval timing procedure,
which involves motor timing over the

longer scale of tens of seconds, similarly

do not seem to affect action timing. How-

ever, those same lesions do disrupt

timing behavior during amodified peak in-

terval procedure wherein two stimuli must

be timed concurrently, suggesting that

primary motor cortex may play an impor-
tant role in splitting timing resources between multiple tasks (Ol-

ton et al., 1988), even after extensive training. Interestingly, many

more neurons in primarymotor cortex responded to concurrently

presented timing cues but not to single timing cues than re-

sponded to any of the timing cues when they were presented

in the simple, single-interval timing condition (Pang et al., 2001).

Electrophysiological studies performed in awake-behaving

animals performing timing tasks have revealed that neural

activity in a wide range of cortical areas encode time—i.e., it is

possible to estimate elapsed time from the patterns of neural ac-

tivity. Furthermore, the temporal variability of the neural code for

time correlates with the timing of the motor responses—i.e.,

when the ‘‘neural code’’ runs faster than average the motor re-

sponses are produced earlier than average. In addition to the

sensory areas described above, encoding of elapsed time has

been reported in parietal (Maimon and Assad, 2006; Jazayeri

and Shadlen, 2015), prefrontal (Xu et al., 2014; Emmons et al.,

2017;Wang et al., 2018), premotor (Crowe et al., 2014;Murakami

et al., 2014; Merchant and Averbeck, 2017), and motor cortices

(Renoult et al., 2006), and, recently, responses reflecting the de-

cision boundary in an interval-discrimination task were reported

in pre-supplementary motor cortex (Mendoza et al., 2018). As

described below, these neural codes for time take various
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forms—frommonotonic ramping of single neurons, to sequential

activation of neurons, to complex spatiotemporal patterns of ac-

tivity (Figure 4). One recurring feature in some of these studies is

the presence of response dynamics that temporally rescale with

action timing. Such patterns of activity represent a widespread

and powerful mechanism for motor timing. This is because if ac-

tion initiation is triggered by entry into a particular network state,

timed actions or decisions could be produced by simply modu-

lating the speed with which neural populations progress from

some initial condition to an action or decision initiation state

(see below).

The above results suggest that cortical circuits are involved in

a broad range of timing functions and that timing is a general

computation of cortical circuits. Further support for this view is

provided by studies showing that in vitro cortical circuits can

adapt to, and in a sense anticipate, the timing of temporal

patterns administered in vitro (Johnson et al., 2010; Chubykin

et al., 2013; Goel and Buonomano, 2016). Overall, there is

converging in vivo, in vitro, imaging, and lesioning data that sug-

gest that cortical circuits are intrinsically able to process tempo-

ral information and do so on an ‘‘as-needed basis.’’

Models of Motor Timing

Traditionally, most models of timing have focused on motor

timing—i.e., timers or clocks that can actively report elapsed

time. As emphasized earlier, these models can certainly be

used for sensory timing tasks—but sensory timing models are

not well suited for motor tasks. Here, we review three broad clas-

ses of models of motor timing. Our classification is based on the

fundamental basis of timing per se as opposed to the readout

mechanism: (1) oscillator-based models; (2) ramping models;

and (3) population clocks. We focus primarily on models that

are implemented with attention to neurobiological plausibility.

Oscillator-BasedModels. The firstmodels of timing on the scale

of milliseconds to seconds are referred to as internal clock or

pacemaker-accumulator models (Creelman, 1962; Treisman,

1963). In their simplest form internal clock models mirror the prin-

ciples of man-made clocks: an oscillator generates periodic

events that are integrated or counted by an accumulator. While

more sophisticated versions of the internal clock model—most

notably scalar expectancy theory (Gibbon, 1977) have proved to

be very valuable in guiding behavioral and psychophysical exper-

iments, there is very little biological support for the standardpace-

maker-accumulator models. It is important to note that many of

these pacemaker-accumulator models can also be implemented

as ‘‘accumulator’’models inwhich thepacemaker is replacedwith

a tonic input thatgenerally takes the formofafixedfiring ratewitha

Poissondistribution. Suchmodels are essentially equivalent to the

ramping models discussed below (Luzardo et al., 2017).

Other examples of oscillator-based models rely on the notion

that time is encoded in a population of oscillators with different

periods (Miall, 1989; Matell andMeck, 2000, 2004). For example,

a 1-s interval might be encoded by the coincident activity of a

10-, 4-, and 3.33-Hz oscillator. The most detailed version of

this multiple oscillator model is referred to as the striatal beat fre-

quency model, which suggests that distributed cortical circuits

contain a population of neurons oscillating at a range of different

frequencies, and that the medium spiny neurons of the striatum

function as coincidence detectors (Matell and Meck, 2004;
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Buhusi and Meck, 2005)—capturing the beats of the cortical os-

cillators. As discussed above, there is abundant evidence that

the BG contribute to many timing tasks, but there is little evi-

dence that detecting the beats of cortical oscillators represents

the underlying mechanism. Indeed, it seems unlikely that the

sequential activation of MSN neurons observed during timing

tasks (Gouvêa et al., 2015; Mello et al., 2015) is consistent with

the striatal beat frequency (SBF) model.

While there is little experimental support for oscillator-based

mechanisms for timing, it is important to emphasize that it is

well established that oscillators do contribute to timing of rhyth-

mic motor behaviors. The distinction lies in the difference be-

tween supra- and sub-period timing. As proposed in the internal

clock model the time intervals being measured are above the

period of the time base (supra-period timing). Sub-period timing

refers to cases in which the temporal structure being produced

lies below the period of the oscillator—i.e., time is coded in the

phase of the oscillator. The circadian clock provides a clear

example of the subperiod and supraperiod distinction: the circa-

dian clock accurately times intervals below its period, but the

neurons in the suprachiasmatic nucleus do not keep track of

supraperiod intervals (the number of oscillations they have un-

dergone). Many rhythmic motor behaviors that require tightly

timed sequential responses—such as walking, breathing, and

swimming—are governed by the phase of neural oscillators

(Marder and Calabrese, 1996; Grillner, 2003; Feldman and Del

Negro, 2006).

Ramping-Based Models. Ramping models of timing refer to

those in which a neuron or population of neurons undergo an

approximately linear increase (or decrease) in firing rate over

time—thus producing ametric of elapsed time encoded in neural

firing rate (Figure 4A). There are abundant data showing that,

during interval motor timing tasks, neurons in the parietal cortex

(Leon and Shadlen, 2003; Janssen and Shadlen, 2005; Jazayeri

and Shadlen, 2015), prefrontal cortex (Niki and Watanabe, 1979;

Kim et al., 2013; Emmons et al., 2017; Kim et al., 2017), and pre-

motor and motor cortex (Mita et al., 2009; Murakami et al., 2014)

all exhibit approximately linear ramping of firing rates during mo-

tor timing tasks. It is generally the case that a timed motor

response is generated when a population of ramping neurons

reaches a given firing rate threshold. Importantly, the slope of

the ramp generally decreases as the interval being timed in-

creases, while the peak firing rate remains approximately the

same. (Leon and Shadlen, 2003; Murakami et al., 2014; Jazayeri

and Shadlen, 2015; Merchant and Averbeck, 2017).

Since neurons have time constants on the order of tens of mil-

liseconds, and ramping has been observed over scales of sec-

onds, ramping models generally require some sort of positive

feedback mechanism to integrate information and counterbal-

ance membrane ‘‘leak.’’ Cellular- and network-based mecha-

nisms have been proposed to underlie ramping. Cellular-based

mechanisms refer to those in which a single neuron can integrate

input and produce a ramp in firing rate. One such model pro-

poses that tonic synaptic input opens voltage-gated Ca2+ chan-

nels, which in turn activate depolarizing currents resulting in pos-

itive feedback and a linear increase in firing rate (Durstewitz,

2003; Hass and Durstewitz, 2014). Most ramping models, how-

ever, rely on network mechanisms in which positive feedback
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is implemented via recurrent excitatory connections (Reutimann

et al., 2004; Gavornik et al., 2009; Simen et al., 2011; Lim and

Goldman, 2013). In their simplest form, such ramping or drift-

diffusionmodels do not generally account forWeber’s law. How-

ever, a model that has been implemented at the neural level, and

referred to as a time adaptive opponent Poisson drift-diffusion

model, captures Weber’s laws by incorporating both excitatory

and inhibitory feedback (Simen et al., 2011; Balci and Simen,

2016; Merchant and Averbeck, 2017).

While many neurons exhibit ramping during tasks in which an-

imals produce a timed motor response or anticipate a reward, it

is not clear whether ramping neurons are the actual timer or

rather reflect the preparation of a motor response—and are

thus better thought of as the readout of upstream timing circuits.

During most tasks, timing and motor response preparations are

confounded, but it is possible to dissociate them if the timing of

an expected stimulus is bimodally distributed. For example, if a

stimulus is expected at either 0.5 or 2 s, animals can learn the

hazard rate (reaction times will be minimal around 0.5 and 2 s).

If ramping neurons encode absolute time, they would be ex-

pected to exhibit an increase in firing throughout the duration

of the task. In contrast, if they are encoding motor preparation

or expectation, their firing rate should follow the hazard rate (in-

crease around 0.5 s, decrease, and then increase again). This

experiment has been performed while recording from ramping

neurons in the parietal cortex, and the results show that these

neurons encode the probability of the stimulus rather than abso-

lute time (Janssen and Shadlen, 2005). It is not that timing signal

need be monotonically changing but rather that the ramping

often interpreted as timing signals may instead reflect functions

such as action preparation that are driven by upstream timing

signals.

Thus, while there is abundant experimental evidence that

many neurons exhibit ramping firing rates during timing tasks,

many issues remain to be addressed. In addition to whether

ramping encodes time or motor preparation/expectation, it is

not clear whether ramping reflects the timer per se or is pro-

duced by appropriately tuning the weights of upstream neurons

that encode time through changing patterns of neural activity

(Buonomano and Laje, 2010). Indeed, recent experimental

evidence in CA1 place cells suggest that linear ramping of mem-

brane voltage over 1–2 s is produced by sequentially active CA3

neurons with progressively stronger synaptic weights (Bittner

et al., 2017).

Population Clocks. The term population clock refers to models

in which time is encoded in the changing population of neural ac-

tivity (Buonomano and Karmarkar, 2002). Thus, population

clocks rely on a general property of neural circuits: their internal

neural dynamics. We can think of a population clock as a neural

trajectory in N-dimensional space, where N is the number of neu-

rons participating in the population clock and each point on the

trajectory codes for a moment in time (Figure 4). If these patterns

are reproducible and unique at each moment in time, it is

possible for downstream neurons to readout elapsed time.

Critical to the notion of population clocks is that the trajec-

tories emerge from dynamics of the neural circuits; that is,

the patterns occurring early in the trajectory are causally

responsible for the later patterns. Thus, a simple array of
non-interconnected neurons, each firing at different latencies

(e.g., a labeled line model), would not constitute a population

clock because the activity of the neurons firing later are inde-

pendent of the activity of the neurons firing earlier. Popula-

tion-clock models propose that a given neural trajectory

encodes time from the onset of a given stimulus, or relative

time depending on the context (e.g., producing the same motor

pattern slowly or quickly may rely on very similar neural trajec-

tories evolving at a fast or slow speed, respectively). In other

words, one stimulus might elicit neural trajectory T1 and

another stimulus a distinct trajectory T2—thus, the same popu-

lation of neurons encode time from the onset of each stimulus.

The advantage of these stimulus-specific ‘‘clocks’’ is that the

population encodes not only time but the stimulus—in other

words, temporal and spatial processing are intertwined.

Computationally, this offers many advantages. For example,

the first population-clock models were proposed in the context

of the cerebellum in which the changing population of granule

cells encode time since stimulus onset (Buonomano and

Mauk, 1994; Mauk and Donegan, 1997) in order to account

for the timing of conditioned responses. Since population

clocks are inherently capable of encoding both the stimulus

and elapsed time, it is relatively easy to account for the ability

of distinct stimuli to elicit differentially timed response.

Population clocks can potentially take various forms, from

sparse chain-like sequences of neural activation, to complex tra-

jectories in which neurons can exhibit mononotonic and nonmo-

nontonic temporal activity profiles. Evidence for both sparse

(Figures 4C and 4D) and complex (Figures 4E and 4F) population

clocks have been observed throughout the brain, including pari-

etal cortex (Stokes et al., 2013; Crowe et al., 2014), premotor and

motor cortex (Carnevale et al., 2015), frontal cortex (Wang et al.,

2018), prefrontal cortex (Bakhurin et al., 2017), BG (Jin et al.,

2009; Gouvêa et al., 2015; Mello et al., 2015; Bakhurin

et al., 2017), hippocampus (Pastalkova et al., 2008; MacDonald

et al., 2011), and in song birds (Hahnloser et al., 2002;

Lynch et al., 2016)—although in most of these cases, it is not

known whether the dynamics is generated within the circuit be-

ing recorded or rather driven by upstream circuits. But in many of

these experiments, as mentioned above, it has been demon-

strated that the speed of the population clock co-varies with

behavior—i.e., when the population clock runs early in relation

to the mean, so does the timed behavior (Crowe et al., 2014;

Gouvêa et al., 2015; Bakhurin et al., 2017). Furthermore, some

studies suggest that the individual neurons that compromise a

population clock may reflect Weber’s law; e.g., the half-width

of the peak response can increase with the time of this peak

(Mello et al., 2015; Tiganj et al., 2017).

Computational models have proposed that sparse population

clocks (in which each neuron is active only once during a trajec-

tory) are produced by synfire chains or functionally feedforward

patterns of activity (Goldman, 2009; Liu and Buonomano, 2009).

In these sequential trajectories, readout is very straightforward,

as each neuron represents a given amount of elapsed time (or

a ‘‘time field’’). A number of models have proposed how sparse

population clocks can emerge in a self-organizing manner (Buo-

nomano, 2005; Liu and Buonomano, 2009; Fiete et al., 2010;

Miller and Jin, 2013). The general idea is that homeostatic and/or
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associative forms of plasticity lead to the emergence of recurrent

neural networks with an embedded feedforward architecture.

More complex population clocks can take the form of patterns

in which the temporal profiles of neurons is distinct and a given

neuron might be active multiple times during trajectory—thus

resulting population histograms that do not result in a simple

diagonal line of latency-sorted neurons. Models of complex

population clocks rely on relatively strong feedback inherent

to recurrent neural networks. Specifically, networks with strong

recurrent connections are capable of generating continuously

changing patterns of self-perpetuating activity, and when the

recurrent weights are appropriately tune the resulting neural

trajectories can robustly encode time (Laje and Buono-

mano, 2013).

In contrast to ramping models, population clocks lack an

intrinsic metric of time. For example, in a linearly increasing

ramping model, if a cell fired at 5 Hz at the end of one interval

and at 10 Hz at the end of another, we can infer that more time

elapsed during the second interval. In contrast, in a popula-

tion-clock model, if cell X was firing at the end of one interval

and cell Y at the end of another, there is no inherent metric

that allows one to infer a prioriwhich interval was longer. Unless,

of course, the code has been previously learned. This can be

achieved, for example, by having a population clock drive the

ramping of a readout neuron (Buonomano and Laje, 2010). While

the encoding of some sensory features do have intrinsic metrics

(e.g., firing rate is often monotonically related to stimulus inten-

sity), many other features, including spatial localization and the

orientation of lines, also don’t have an intrinsic metric and thus

require establishing a mapping between neurons and the rele-

vant stimulus dimension to make quantitative judgments about

left/right or clockwise/counterclockwise.

Both ramping and population-clock models have been shown

to be able to account for an important feature motor timing: tem-

poral scaling. Specifically, motor behaviors such as playing a

musical instrument can be executed at different speeds. In the

case of ramping models, the slope of the firing rate can be

altered by changing themagnitude of the tonic input that is being

integrated—thus increasing or decreasing the amount of time

the integrator takes to reach some threshold (Simen et al.,

2011; Murakami et al., 2014). In the case of population clocks,

it has been shown that the trajectories produced by firing-rate

based recurrent neural networks (RNNs) can be traversed at

different speeds. Again, changing the magnitude of a tonic input

to appropriately trained RNNs can produce very similar neural

trajectories that are traversed more quickly or slowly (Hardy

et al., 2017; Wang et al., 2018)—these ‘‘parallel trajectories’’ lie

along a manifold in phase space. As mentioned above, temporal

scaling of a sparse population clocks has also been imple-

mented in a striatal model (Murray and Escola, 2017). This model

relies on the fact that high-firing rates can accelerate short-term

depression of inhibitory synapses, again accelerating the trajec-

tory. While both ramping and population clocks can account

for temporal scaling, a strength of population-clock models is

that they are better suited to account for pattern timing—that

is, generate complex spatiotemporal patterns, such as those

that underlie speech or Morse code (Hardy and Buono-

mano, 2016).
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Conclusions
It is increasingly well accepted that the ability to tell time, to pre-

dict when events will happen, and to process and represent tem-

poral patterns are among the brain’s most important and basic

functions (Meck and Ivry, 2016; Buzsáki and Llinás, 2017).

Thus, understanding the neural basis of timing and temporal pro-

cessing will be a critical step toward generating general theories

of sensorimotor processing, learning, and cognition. Here, we

emphasize that precisely because of the importance of time to

so many distinct aspects of brain function there is not a specific

mechanism or area underlying timing, any more than there is a

single area responsible for processing and representing informa-

tion about space. Depending on the timescale of interest and the

computational requirements of the task, the brain engages a di-

versity of mechanisms and areas to tell time, and to processes

temporal patterns.

We argue that one of the most general mechanisms contrib-

uting to timing across many different areas and tasks is the

inherent cellular and network dynamics of neural circuits.

Neurons and neural circuits are richly dynamical systems, and

this dynamics likely evolved in part to allow the brain to capture

time and process temporal information. Conversely, the brain’s

natural dynamics was likely coopted to solve many types of tem-

poral problems. This is not to say that there are not some special-

ized or centralized areas underlying some forms of timing in the

millisecond to seconds range but rather that questions about the

neural basis of timingmust be placed in the context of the task at

hand and the computational requirements of the task.

Future advances in the timing field will rely in part on an

improved taxonomy of time. That is, a better understanding of

which types of tasks and problems use shared mechanisms

and circuits. Additionally, one of the most pressing problems in

the timing field is the need to establish a causal relationship be-

tween the neural patterns of activity that seem to underlie many

forms of timing and behavior. Given the evidence that timing is

intrinsic to many neural circuits—and that even within the

same task different areas may contribute to timing—such exper-

iments are likely to be even more challenging than in other fields

of systems neuroscience. Nevertheless, optogenetic and tem-

perature manipulations that specifically slow or accelerate neu-

ral trajectories underlying population clocks offer promising

approaches.
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