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Timing is critical to most forms of learning, behavior, and sensory-motor processing. Converging evidence
supports the notion that, precisely because of its importance across a wide range of brain functions, timing
relies on intrinsic and general properties of neurons and neural circuits; that is, the brain uses its natural
cellular and network dynamics to solve a diversity of temporal computations. Many circuits have been shown
to encode elapsed time in dynamically changing patterns of neural activity—so-called population clocks. But
temporal processing encompasses a wide range of different computations, and just as there are different
circuits and mechanisms underlying computations about space, there are a multitude of circuits and mech-

anisms underlying the ability to tell time and generate temporal patterns.

The office of this faculty is to mark the passage of time,
duration, succession of events, etc. It also remembers
dates, keeps correct time in music and dancing, and in-
duces to punctuality in the fulfillment of engagements. —
Charles H. Olin (Phrenology: How to Tell Your Own and
Your Friend’s Character from the Shape of the Head)

Introduction

The above quote from a phrenology text from the 19" century
describes the functions of the “time organ” within the brain
(Olin, 1910). This phrenological view, in which a highly special-
ized area is responsible for timing in all its shapes and forms,
captures an extreme version of the notion of a master clock.
A less extreme form of the master clock theory influenced
research on timing late into 20" century. For example, Aschoff
(1985) asked whether the prolonged isolation from external
cues that alters the period of the circadian clock also affected
the ability of humans to time intervals on the order of seconds.
His results did not reveal any relationship between timing on
the scale of seconds and days. Other experiments, however,
suggested such a link; for example, it was reported that the
circadian clock gene period alters the timing of the courtship
songs in fruit flies (Kyriacou and Hall, 1980, 1986). These exper-
iments have not been replicated (Stern, 2014), and studies in ro-
dents have confirmed the lack of any direct relationship between
circadian timing and interval timing on the scale of seconds
(Lewis et al., 2003; Cordes and Gallistel, 2008; Papachristos
et al., 2011)—of course, because the circadian rhythms modu-
late a wide variety of cognitive and physiological functions, it
can affect performance on a wide range of tasks, including
timing tasks (Golombek et al., 2014).

We now understand that the brain has fundamentally different
mechanisms in place to tell time across different scales. For
example, the transcription-translation autoregulatory feedback
loops that implement the circadian clock are entirely indepen-
dent of the timing mechanisms responsible for the detection of

L)

Gheck for
Updates

interaural delays on the scale of microseconds. These mecha-
nisms, which operate on the extreme ranges of biological timing,
are relatively well understood. In contrast, the mechanisms un-
derlying timing on the intermediate scale of tens of milliseconds
to tens of seconds remains a mystery. It is this temporal scale
that is the focus of the current review.
Tens of Milliseconds to Tens of Seconds
The ability to tell time, discriminate temporal patterns, and pro-
duce appropriately timed motor responses on the scale of milli-
seconds to seconds is critical to many, if not most, forms of
learning and behavior. For example, on the sensory side many
animals use interval, duration, and the overall temporal structure
of vocalization elements to communicate. On the motor side, the
brain must generate highly complex and well-timed motor pat-
terns in order to capture prey or play a musical instrument.
Furthermore, animals are able to anticipate when events will
occur and adjust their behavior appropriately: rodents will antic-
ipate a reward onset by licking, and humans anticipate when a
traffic light will change to green by shifting their focus to the light.
Timing on the scale of tens of milliseconds to a few seconds, in
particular, is unique in that it extends far beyond the need to time
simple isolated intervals or durations. It allows for the recognition
and generation of complex temporal patterns that cannot be char-
acterized by the duration of any one element. For example, Morse
code reduces communication to a purely temporal code, in which
information is based on not only identification of the duration of in-
dividual elements (“dots” versus “dashes”), but the overall global
temporal structure of sequences of tones and pauses. Similarly,
speech and music rely on the on the ability to recognize the
higher-order temporal structure of sequences of notes on the
scale of tens of milliseconds to a few seconds, and outside this
range the ability to detect prosody or rhythm is lost—if a musical
piece is slowed or sped up too much, it ceases to be music.
Time and Space
Many theories and models have been proposed to account for
timing (see Ivry and Spencer, 2004; Mauk and Buonomano,
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Figure 1. Taxonomy of Timing Tasks

The continuum along at least two task dimensions are likely to be important for
understanding the neural basis of timing: sensory versus motor and interval
versus pattern timing. Some tasks (Interval Timing) require the discrimination
(Sensory Timing) or production (Motor Timing) of simple durations or intervals
(or anticipation of an external event). Other tasks (Pattern Timing) require the
discrimination or production of complex temporal or spatiotemporal pat-
terns—such as deciphering Morse code signals (Sensory timing) or tapping a
complex temporal pattern (Motor Timing). Upper left: adapted from Gouvéa
et al. (2015). Lower left: adapted from Kawai et al. (2015).

2004; Buhusi and Meck, 2006; Coull et al., 2011; Merchant et al.,
2013). Overall, these models loosely fit into two broad classes:
dedicated and intrinsic models (lvry and Schlerf, 2008). Dedi-
cated models propose that the brain has a more or less central-
ized set of circuits for timing that account for timing across mo-
dalities, tasks, and scales within the range of hundreds of
milliseconds to many seconds. In these models, timing relies
on dedicated or specialized neural mechanisms. Intrinsic models
propose that timing is an intrinsic computation of most neural cir-
cuits, and timing per se emerges from general properties of neu-
rons and the inherent dynamics of neural circuits.

Here, we argue that converging data strongly support intrinsic
models. Indeed, we suggest that given the importance and
universality of temporal computations, dedicated models would
not make computational sense. This does not imply that there
are not some brain areas involved in a range of temporal tasks
that share similar temporal processing requirements, but rather
that distinct temporal computations, such as processing a
Morse code message and anticipating when a traffic light will
change, rely on distinct circuits and mechanisms. Under this
view, areas that are consistently implicated in timing tasks
should not be thought of as a central clock, but as areas that
are involved in tasks that are inherently temporal in nature—
e.g., since preparing and producing motor responses are inher-
ently temporal in nature, motor areas should be consistently
implicated in timing.

How the brain processes information about space provides a
useful analogy for the intrinsic timing perspective. Like the tem-
poral dimension, the spatial dimension permeates much of what
the brain must accomplish, from localizing the position of objects
in space, to guiding movements to grasp objects, and creating
large-scale maps for spatial navigation. Mammals have many
different maps of external space, including those in the colliculi,
auditory cortex, visual cortex, hippocampus, and parietal cortex
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(Knudsen et al., 1987; Kandel et al., 2013). The multitude of
spatial representations within the brain can map onto each other
and form more general polymodal maps in the parietal cortex.
Furthermore, consistent with the intrinsic perspective of timing,
different maps of external space are computed in different
ways and make distinct contributions to sensori-motor process-
ing and cognition.

The Taxonomy of Time

Scientific advances sometimes rely not on a specific discovery
or technical innovation, but on the clarity provided by the
appropriate classification of the phenomenon being studied.
For example, a critical breakthrough in the learning and mem-
ory field was the distinction between implicit and explicit
memory, and the understanding that memory is not a unitary
process—i.e., different forms of memory rely on different cir-
cuits and mechanisms (Squire, 1986). It is increasingly recog-
nized that a major challenge in the timing field is to establish
the correct taxonomy of time (Meck and Ivry, 2016). That is,
to determine which of the many different forms of timing rely
on the same circuits and mechanisms.

As a first step toward a taxonomy of time, it is critical to
distinguish between true timing tasks and time-dependent
tasks. Timing tasks refer to those that are directly based on in-
terval or duration and that require some sort of timing device to
solve. In contrast, some tasks are defined by their temporal
properties but are not considered timing tasks, such as judging
whether two sensory events occur simultaneously or not (asyn-
chrony tasks) or which of two events came first (temporal-order
tasks). These tasks do not require a clock or timing device to
solve. Standard examples of timing tasks include (Gron-
din, 2010):

Interval/duration discrimination. discriminating which of two
presented durations (or intervals) is the longest, or making a
judgment as to whether an event is short or long relative to a
standard (e.g., bisection task).

Reproduction. reproducing the duration or temporal structure
of a presented sensory stimulus—e.g., tapping an interval
demarcated by two tones or reproducing the complex temporal
structure of a presented Morse code pattern.

Production. production of a simple or complex temporal
pattern in the absence of any recent sensory presentation of
the relevant interval or pattern—e.g., human subjects asked to
press a key for “1 second,” or a rodent that produces a timed
anticipatory motor response (e.g., an eyeblink that precedes
the US, or licking in anticipation of a predicted reward).

Each of the above categories encompasses a large number
of different tasks that vary across sensory modality, temporal
scale, and the temporal characteristics of the sensory or
motor pattern. And they do not necessarily comprise a
taxonomy of time because they provide few insights into
which rely on similar underlying neural mechanisms and cir-
cuits. While the establishment of a taxonomy of time remains
a major objective of the timing field, there is some consensus
as to key dimensions that are likely to be critical to the forma-
tion of a taxonomy of time. Here, we highlight three dimen-
sions: (1) subsecond versus suprasecond timing; (2) interval
versus pattern timing; (3) sensory versus motor timing
(Figure 1).
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Subsecond versus Suprasecond Timing. There is ample evi-
dence that timing of very short and very long intervals relies on
different mechanisms and areas; however, there is no clear
boundary between what constitutes a short or long interval.
Nevertheless, a loose distinction between sub- and supra-sec-
ond timing is often made. Pharmacological (Rammsayer and Vo-
gel, 1992; Rammsayer, 1999), psychophysical (Karmarkar and
Buonomano, 2007; Spencer et al.,, 2009; Rammsayer et al.,
2015), and imaging (Lewis and Miall, 2003) studies suggest
that discriminating a short interval (e.g., 50-100 ms) recruits
different circuits than the discrimination of longer (>1 s) intervals.
Interval versus Pattern Timing. Imaging studies suggest that
tasks that require the production of simple intervals or specific
patterns recruit different neural circuits (Grube et al., 2010;
Teki et al., 2011). Indeed, the distinction between simple and
complex timing seems critical because these timing tasks can
have fundamentally different computational requirements (Hardy
and Buonomano, 2016). Discriminating the duration of a single
musical note or anticipating the arrival of a reward relies on the
timing of isolated durations or intervals and can easily be solved
with timing mechanisms analogous to a stopwatch. In contrast,
recognizing the tempo of a song, the prosody of speech, or pro-
ducing Morse code are tasks that are defined by the duration and
interval of components, as well as by the overall global temporal
structure of a sequence of these components. Critically, when
such patterns are scaled in time, they can be identified as the
same pattern (a song played at different tempos is still the
same song).
Sensory and Motor Timing. Time is not a sensory modality like
vision or audition; rather, like space, time is a fundamental
dimension of sensory data. Thus, it is important to consider the
degree to which a task involves analyzing temporal relationships
present in the external world versus imposing temporal structure
onto the external world through action. To attempt to capture this
difference, we distinguish between sensory and motor timing
tasks—but emphasize that some tasks have both sensory and
motor components. Duration and interval discrimination
comprise prototypical sensory timing tasks: subjects report
whether an external stimulus was “short” or “long” by perform-
ing a motor action such as pressing one of two keys, or nose-
poking to the left or right. While these tasks require a motor
response, the decision is based on the temporal properties of
a sensory event, and the timing of the motor response is irrele-
vant. Sensory timing also includes many other distinct computa-
tions: from deciphering the temporal structure of speech and
other forms of communication to learning about the statistical
regularities between events in the environment that underlie
associative learning and prediction. Motor timing tasks, such
as motor production, require the brain to actively generate an
internally timed response or prediction—such as licking, blink-
ing, or shifting attention, at a given interval after a start cue.
The sensory versus motor dimension is, of course, a contin-
uum: while some tasks can be considered to be exclusively sen-
sory or motor in terms of the task constraints, many, perhaps
most, require timing of both sensory inputs and motor outputs
(e.g., reproduction tasks). While the distinction between sensory
and motor timing is based primarily on the characteristics of the
task, there is evidence for the involvement of distinct areas and

mechanisms in some forms of sensory and motor timing. For
example, interval- and duration-selective neurons that have
been identified in the brainstem and sensory cortices (see below)
bear the hallmarks of extraction of temporal information as
opposed to the generation of timed patterns. Below we will
use the sensory versus motor distinction to review the areas
that have been implicated in timing, yet we stress that depending
on the task and timescale in question many areas, such as the
basal ganglia, have been implicated in both sensory and motor
timing.

Models of Timing

An important step toward elucidating the neural mechanisms of
timing is the development of theories and models of how the
brain tells time and process temporal information. Models, how-
ever, differ significantly in the level of analyses they address, and
in their ability to generate experimental predictions. David Marr
distinguished between three levels of analyses: (1) a computa-
tional level that essentially defined the problem being addressed
from a computational or information processing perspective; (2)
an algorithmic level that sought to solve a problem algorithmi-
cally—that is, without regard to how the brain may actually
implement such an algorithm; and (3) an implementational level,
which, in the case of neuroscience, seeks to develop models im-
plemented at the level of synapses, neurons, and neural circuits.

The first models of timing on the scale of hundreds of millisec-
onds and seconds were pacemaker-accumulator models (Creel-
man, 1962; Treisman, 1963)—and, by far, the most influential of
these is referred to as scalar-expectancy theory (Gibbon, 1977).
Like man-made clocks, pacemaker-accumulator models postu-
lated a time-base or oscillator, and an accumulator or integrator
that essentially provides a linear readout of elapsed time. Most
pacemaker-accumulator models, however, concerned them-
selves with accounting for the behavioral data, such was
whether Weber’s law was satisfied, and not with a biological im-
plementation. Weber’s law (or the scalar property) is a general
feature of timing and represents an important benchmark for
models of timing (Gibbon, 1977). It refers to the observation
that, for example, in motor timing tasks the SD of the response
time across trials increases linearly with the mean time of the re-
sponses. While Weber’s law is robust, it is not universal, and it
generally applies to restricted temporal ranges, e.g., the Weber
fraction (o/t) can differ significantly for intervals of a few hundred
milliseconds, seconds, and tens of seconds (Lewis and Miall,
2009; Grondin, 2014).

We will focus primarily on models implemented with attention
to biological realism and supported by electrophysiological data.
In the context of sensory timing, this includes a wide range of
models that exploit the time-varying neuronal and synaptic prop-
erties to create temporal filters. In the context of motor timing, we
focus primarily on ramping models and population clocks.
Ramping models (e.g., Durstewitz, 2003; Simen et al., 2011;
Balci and Simen, 2016) propose that time is encoded in mono-
tonic changes in firing rate and that actions are produced
when the firing rates reaches a threshold value. Such ramping
neurons have been observed in a wide range of brain areas dur-
ing timing tasks. An alternative to encoding time in the monotonic
changes in firing rate is that the nervous system encodes time in
the dynamically changing population of neurons (population
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clocks)—ranging from sequential chains of activity (Abeles,
1982) to complex patterns. This hypothesis, referred to as pop-
ulation clock, was first proposed in the context of the cerebellum
(Buonomano and Mauk, 1994; Mauk and Donegan, 1997), and
there is now a large amount of cumulative data supporting this
hypothesis.

Sensory Timing

As defined above, sensory timing refers to tasks in which deci-
sions are based on the temporal structure of stimuli. In humans,
a prototypical sensory timing task is interval (or duration)
discrimination, whereas in animal studies the bisection task is
often used. In a bisection task, subjects are trained to make
one choice when presented with a stimulus of a long duration,
and another choice when presented with a stimulus of a short
duration. After training, subjects undergo a procedure wherein
the majority of trials are equivalent to the training phase, but on
probe trials they are presented with stimuli of intermediate dura-
tion between the long- and short-duration standards. By fitting
psychometric curves to the probability of choice data across
the presented stimuli, it is possible to estimate the point of indif-
ference, i.e., the interval that subjects are equally likely to judge
as long and short. On probe trials, subjects are not rewarded;
thus, their categorical choices have historically been thought to
reflect the subjective similarity to the intervals that were rein-
forced during training. However, recent work suggests that,
instead of reflecting perceptual similarity between short and
long standards, the point of indifference may reflect the point
where short and long choices are of equal value to the animal
and is thus subject to factors such as the degree to which the
value of future rewards are discounted relative to immediate
ones (Kopec and Brody, 2018).

Sensory timing tasks represent the temporal equivalent of
standard “spatial” sensory-discrimination tasks, such as orien-
tation and pitch discrimination in the visual and auditory sensory
modalities, respectively. Our understanding of the neural mech-
anisms underlying spatial processing and pattern recognition
have benefited immensely from (1) studies of perceptual learning
that significantly constrain the location and mechanisms of
spatial pattern discrimination; and (2) identification of neurons
that respond selectivity to specific spatial patterns, and how
neural tuning changes with learning (Buonomano and Merze-
nich, 1998; Karmarkar and Dan, 2006; Gilbert et al., 2009).
Thus, in this section we first address (1) whether sensory timing
undergoes perceptual learning; (2) evidence that neurons in
some early brain areas are tuned to the interval and duration of
sensory stimuli; and (3) the areas of the brain that have been
implicated in sensory timing. Last, we review models of sensory
timing.

Temporal Perceptual Learning

While interval discrimination studies have been performed in hu-
mans for over 100 years (Mehner, 1885), it was not until the 90s
that the question of whether interval discrimination thresholds
improve with practice was systematically addressed. Although
some studies demonstrated that musicians are superior at inter-
val discrimination (Keele et al., 1985), other studies suggested in-
terval timing does not improve with practice (Rammsayer, 1994).
Subsequent studies, however, revealed that interval learning

690 Neuron 98, May 16, 2018

Neuron

undergoes robust learning—however, unlike some forms of
perceptual learning, temporal perceptual learning is relatively
slow and requires training across days (for a review, see Bueti
and Buonomano, 2014). One of the first studies to demonstrate
temporal perceptual learning revealed that, after training sub-
jects for 1 hr a day for 10 days, interval discrimination thresholds
for a 100-ms interval improved from 24% to 12% (Wright et al.,
1997). Importantly, despite the significant learning on the trained
100-ms interval, there was no detectable improvement on un-
trained 50-, 200-, and 500-ms intervals. This temporal specificity
of temporal perceptual learning has been replicated in many
studies and is now seen as a general characteristic of temporal
perceptual learning (Nagarajan et al., 1998; Karmarkar and Buo-
nomano, 2003; Buonomano et al., 2009; Wright et al., 2010;
Bueti et al., 2012). Temporal specificity during interval-discrim-
ination tasks constrain the neural mechanisms and models un-
derlying sensory timing and argue against the notion of a single
master clock. Specifically, if the overall precision of a clock
improved with practice, it would be expected to enhance
performance across a range of intervals, not just the trained
interval. Another critical question relates to “spatial” general-
ization of temporal learning—e.g., after training on a 100-ms
interval demarcated by brief 1-kHz tones, do humans improve
on their ability to discriminate that same interval now bounded
by 4-kHz tone? Interestingly, most studies have reported
robust spatial generalization, but the interpretation of this
finding is complicated by the fact that spatial generalization
lags temporal perceptual learning—suggesting that generaliza-
tion to different tones may result from top-down mechanisms
independent of the timing mechanisms per se (Wright
et al., 2010).

Interval- and Duration-Selective Neurons

It is well established that discrimination and learning of spatial
patterns relies in part on the selectivity of neurons to the spatial
structure of sensory inputs (Karmarkar and Dan, 2006; Gilbert
et al., 2009; Froemke et al., 2013)—such as orientation or fre-
quency-tuned neurons in V1 and A1, respectively. Although
less common, neurons that respond selectively to interval or
duration on the order of tens-to-hundreds of milliseconds have
been identified in numerous brain areas.

Many forms of animal communication rely on temporal pattern
recognition on the scale of tens to hundreds of milliseconds. In-
sects, frogs, fish, birds, and mammals have the ability to detect
specific temporal patterns in sensory input as a means of intra-
species communication. And this ability relies in part on neurons
that are tuned to the relevant temporal features of the vocaliza-
tions. Neurons in the torus semicircularis (TS) of frogs, for
example, display variable tuning for ethologically relevant tem-
poral features of either experimentally generated or natural calls
(Elliott et al., 2011; Rose, 2014). Interval- and rate-tuned neurons
have also been identified in the brainstem of weakly electric fish
that use the temporal features of discharge from their electric
organs to communicate (Figure 2A) (Carlson, 2009). The mecha-
nism underlying temporal tuning in these cases is not fully under-
stood, but it has been established that selectivity relies in part on
dynamic changes in the balance of excitation and inhibition
imposed by temporal summation and short-term synaptic plas-
ticity (see below).
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Figure 2. Example of Interval-Tuned Neurons

(A) Voltage traces from a neuron in the midbrain of an electric fish to trains of
electrical pulses presented at intervals of 100 (left), 50 (center), and 10 ms
(right). The rows represent three separate repetitions of each train. This neuron
was tuned to pulses delivered at intervals of 50 ms (right). Adapted from
Carlson (2009).

(B) Rastergram of a neuron from rat auditory cortex in response to five different
stimuli, each composed of a 200-ms 3-kHz tone followed by a 50-ms 7-kHz
(characteristic frequency [CF]) tone with different stimulus-onset asyn-
chronies. Numbers represent the facilitation index. Rats were trained to detect
an interval of 100 ms between both tones (red arrow), and this was the
spatiotemporal pattern that elicited the maximal response across the popu-
lation (right). Error bars represent SEMs. Adapted from Zhou et al. (2010).

(C) Model of how STP can generate an interval selective neuron in a disynaptic
circuit composed of an excitatory (blue) and inhibitory (red) neuron (traces from
three intervals are overlaid). Left, the input to both neurons exhibits paired-
pulse facilitation. Right, by adjusting the weights onto both the Ex and Inh
neurons, it is possible to create an Ex neuron that functions as a 50-, 100-, or
200-ms detector. Adapted from Buonomano (2000).

Temporally selective neurons have also been identified in the
cortical circuits of birds and mammals. Indeed, some of the first ex-
amples of temporally selective neurons were described in the sen-
sori-motor area HVC of zebra finches. Some HVC neurons are
tuned to the interval between two tones, responding optimally to
specific intertone intervals in the range of tens to hundreds of mil-
liseconds (Margoliash, 1983). Other studies in song birds have
confirmed the presence of neurons that are sensitive to a diverse
array of temporal and spatiotemporal sensory features (Margoliash
and Fortune, 1992; Lewicki and Konishi, 1995; Doupe, 1997).

In the mammalian cortex, studies have identified auditory neu-
rons that are sensitive to the interval and duration of tones, as

well as the overall spatiotemporal structure of auditory stimuli
(He et al., 1997; Brosch and Schreiner, 2000; Sadagopan and
Wang, 2009; Zhou et al., 2010). And duration-sensitive neurons
have also been identified in V1 (Duysens et al., 1996). Impor-
tantly, as is the case with spatial perceptual learning, there is
some evidence that the presence of temporally selective neu-
rons is modulated by experience. In one study (Zhou et al.,
2010), rats were trained to nose-poke in response to a 3-kHz
tone followed by a 7-kHz tone with a 300-ms stimulus-onset
asynchrony. After weeks of training, recordings in A1 revealed
a bias toward the spectral and temporal features of the target
stimulus. For example, Figure 2B shows a neuron that re-
sponded moderately to a brief 7-kHz tone; however, the
response to the 7-kHz tone was facilitated by over 100% when
it followed the 3-kHz tone by 300 ms, importantly in this neuron
(and across the population) this facilitation was temporally tuned.

In contrast to the ordered topographic maps underlying spatial
tuning, there have been few reports of chronotopic maps in sen-
sory cortices. Nevertheless, there seems to be a sparse repre-
sentation of temporal features in sensory cortices, as revealed
by the presence of temporally selective neurons. It is reasonable
to hypothesize that these neurons contribute to sensory timing in
the tens-to-hundreds of milliseconds range (but see Pai et al.,
2011). Furthermore, similarly to spatial perceptual tasks, there
is significant evidence from animal (Kilgard and Merzenich,
2002; Yinetal., 2008; Zhou et al., 2010) and human (van Wassen-
hove and Nagarajan, 2007; Bueti et al., 2012) studies that
perceptual learning of temporal stimuli in the tens-to-hundreds
of milliseconds range rely on cortical plasticity.
Basal Ganglia
The basal ganglia (BG), a collection of subcortical nuclei that
receive input from almost the entire cortical mantle as well as
multiple thalamic areas, are often implicated in sensory and mo-
tor timing on the scale of hundreds of milliseconds to seconds.
This is perhaps not surprising given that the BG contribute to
reinforcement learning—forming predictions about future
reward and selecting actions that lead to rewarding outcomes.
A fundamental aspect of learning to predict something is the
ability to detect temporal contingencies (Balsam and Gallistel,
2009), the degree to which some event or action reduces uncer-
tainty about another, and there is behavioral evidence that
animals represent the temporal statistics of events required for
performing probabilistic inference thought to underlie this
manner of associative learning (Kheifets and Gallistel, 2012;
Li and Dudman, 2013). In addition, execution of behavior often
involves proper timing and sequencing of action. Thus, the BG
should at the very least have access to representations of timing
information for both learning predictions and producing proper
behavior. Evidence for BG involvement in timing comes from a
variety of sources, including disease states, lesions, and phar-
macological or genetic manipulations that affect BG functioning
as well as functional neuroimaging and neurophysiology. Here,
we will briefly discuss the evidence that the BG contribute to sen-
sory timing and provide a more detailed discussion of the role of
the BG in timing in the Motor Timing section.

While the BG have predominantly been studied in the context
of what would fall under motor timing tasks, there is significant
evidence that BG are involved in sensory timing. For example,

Neuron 98, May 16, 2018 691

CellPress




A Striatal network

Population
progressed
quickly

0.54

P (Long Choice)
o
5

P (Long Choice)

Population
progressed
slowly

24 ©

06 15
Time Interval (s)

multiple fMRI studies have described significant activation of the
human striatum during an interval categorization task where sub-
jects were trained to categorize intervals as longer or shorter
than a cued decision boundary as compared to a control task
(Rao et al., 2001; Pouthas et al., 2005). In addition, in monkeys
trained to perform a duration comparison between two sequen-
tially presented intervals, information related to both the categor-
ical decision—was the current interval longer or shorter than the
previously presented interval—and the elapsed time within an
interval was encoded in the firing of neurons in the striatum
(Chiba et al., 2015).

One piece of evidence that the BG play a causal role in sensory
timing is data showing that inactivation via infusion of muscimol
into the rat dorsal striatum impairs performance of a interval
categorization task (Gouvéa et al., 2015). Recordings from single
units around the site of muscimol infusions revealed rich and
variable dynamics that, when viewed at the population level,
encoded information about elapsed time during interval presen-
tation. Furthermore, the timing information derived from simulta-
neously recorded ensembles of striatal neurons predicted the
trial-to-trial variation in duration judgments produced by the an-
imals (Figure 3). When population dynamics proceeded more
quickly, rats were more likely to judge a given interval as being
in the “long” category, and vice versa when population dy-
namics proceeded more slowly, indicating that striatal dynamics
reflected the timing information that rats were using to guide their
judgments (Gouvéa et al., 2015). These data demonstrate that
the striatum was required, and striatal populations encoded in-
formation, for guiding what we would define as a sensory timing
task. That said, it is possible that animals develop a motor strat-
egy for solving this type of task. For example, animals might learn
that reward is available to the left up to some state as a motor
pattern is produced. Indeed, pigeons, mice, and rats have all
been observed to initially move toward the location where a short
categorical choice is reported and then move toward the loca-
tion where a long categorical choice is reported as time elapses
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Figure 3. Midbrain Dopamine Neurons and

Striatal Dynamics May Interact to Regulate
Timing

(A) The speed with which striatal ensembles tra-
verse neural space (top panel) predicts duration
judgments (lower panel) in an interval-discrimina-
tion task. Colored schematic trajectories in top
panel depict a quickly (red) or slowly (blue) evolving
ensemble activity pattern during interval presen-
tation in a space defined by the firing of simulta-
neously recorded striatal neurons. Psychometric
curves for trials segregated on the basis of whether
activity proceeded quickly or slowly during interval
presentation. Adapted from Gouvéa et al. (2015).

(B) Calcium signals collected from dopamine
neurons in the SNc exhibited trial-to-trial variability
during interval presentations (top panel) that pre-
dicted the timing judgments of mice during the
same interval-discrimination task used during the
data collected in (A) (adapted from Soares et al.,
2016). Given the dense innervation of striatal net-
works (in black, center) by nigro-striatal dopamine
neurons (in purple, center) and the fact that SNc
dopamine neurons receive significant input from
striatum, these data support a hypothesis where
the two brain areas reciprocally influence each
other’s timing functions.
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past the decision boundary in temporal discrimination para-
digms (Machado and Keen, 2003; Gouvéa et al., 2014). Such ob-
servations have been interpreted as evidence that animals use
embodied solutions to solve sensory timing tasks (Killeen and
Fetterman, 1988; Machado et al., 2009). However, comparing
simultaneously recorded high-speed video and neural popula-
tion activity revealed a clear asymmetry between when timing in-
formation appeared in neural activity and behavior, with neural
activity leading behavior by ~300 ms (Gouvéa et al., 2015).
Thus, while time encoding by striatal neurons likely carries infor-
mation about a plan for future action, it is unlikely to represent
motor commands on their way out of the CNS, nor could it solely
reflect the sensory consequences of action.
Mechanisms and Models of Sensory Timing
Computational models of timing have not generally explicitly
distinguished between sensory and motor timing. We argue
that such a distinction is important, because the temporally se-
lective neurons in the brainstem and sensory cortex seem to
behave as temporal filters as opposed to timers, and are unlikely
to be directly responsible for the production of timed motor pat-
terns. Mechanistically, we can think of the sensory and motor
timing distinction as relying on passive versus active neural
mechanisms, respectively. Passive neural mechanisms refer to
those that react to the temporal structure of stimuli, but that
are incapable of actively generating a timed response. A proto-
typical example of a passive mechanism is a band-pass tem-
poral filter, which gates the information arriving at certain
frequencies, but cannot actively produce a timed response. In
contrast, motor and implicit timing require a circuit to actively
generate a timed signal. We stress, however, that, while the
distinction between sensory and motor timing is important,
they can be overlapping, and indeed many models of motor
timing can account for simple sensory timing (such as interval
and duration discrimination).

Models of sensory timing have typically relied on the temporal
characteristic of neurons and synapses to implement time
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delays or temporal filters. Axonal time delays that contribute to
the detection of interaural time delays in the range of tens of mi-
croseconds were among the first example of models of sensory
timing (Jeffress, 1948). Later models attempted to extend these
axonal delay line models to the range of tens to hundreds of mil-
liseconds by proposing that the parallel fibers of cerebellar
granule cells may function as delay lines on the order of tens-
to-hundreds of milliseconds (Braitenberg, 1967). Today there is
little experimental support for the notion that axonal (or dendritic)
delay lines contribute to timing at intervals above tens of millisec-
onds. But as we will see next, it is clear that the brain uses many
other well-described neural and synaptic properties to imple-
ment temporal filters and solve some sensory timing problems.
Temporal Selectivity Based on Changes in the Excitatory-Inhibi-
tory Balance. Much of the sensory timing required for animal
communication—ranging from the interval and rate codes of in-
sects and frogs to the complex vocalizations of birds and
humans —takes place on the timescale of tens-to-hundreds of
milliseconds. It is probably not coincidental that this is the range
of the time constants of the vast majority of neuronal and synap-
tic properties, including the kinetics of K* and Ca®* channels fast
(tens of milliseconds) ionotropic and slower (hundreds of
milliseconds) metabotropic receptors (e.g., GABAg and NMDA
receptors), and short-term synaptic plasticity. Together these
neuronal and synaptic properties provide a rich palette to
generate neurons that are selective to the interval, duration,
or temporal structure of sensory stimuli. Indeed, there is
converging evidence across numerous systems that the tempo-
rally selective neurons reported in crickets, frogs, electric fish,
bats, and rodents rely on dynamic shifts in the balance of excita-
tion and inhibition produced by time-varying cellular and
synaptic properties such as inhibition, rebound excitation, and
short-term synaptic plasticity (Edwards et al., 2007; Aubie
et al., 2009; Elliott et al., 2011; Kostarakos and Hedwig, 2012;
Baker and Carlson, 2014; Rose, 2014; Goel and Buono-
mano, 2016).

Early models of duration selectivity in frogs and bats relied on
coincidence arrival of a delayed excitatory input with the input
generated by stimulus offset (Narins and Capranica, 1980; Sulli-
van, 1982; Saitoh and Suga, 1995; Aubie et al., 2009). Some of
these early models relied on rebound excitation produced by
the offset of inhibition. For example, interval selectivity to a
50-ms tone could result from stimulus onset triggering inhibition
that produced rebound excitation at 50 ms, and when this
rebound coincided with a subthreshold input produced by tone
offset a spike would be generated. There is evidence that the
temporally tuned neurons of the cricket rely on the convergence
of delayed events imposed by rebound excitation and non-de-
layed inputs arising from a second sensory event (Kostarakos
and Hedwig, 2012). And there is significant experimental evi-
dence that duration-selective neurons in the inferior colliculus
rely on a combination of mechanisms relating to the duration
of inhibitory postsynaptic potentials (IPSPs) and rebound excita-
tion (Covey and Casseday, 1999; Pérez-Gonzalez et al., 2006;
Aubie et al., 2009, 2012). More speculative models of interval
and duration selectivity have focused on the filtering properties
based on the time constants of K* channels (Hooper et al.,
2002) or metabotropic glutamate receptors (Fiala et al., 1996).

Other models have proposed that short-term synaptic plas-
ticity contributes to the formation of temporally selective neurons
(Buonomano and Merzenich, 1995; Buonomano, 2000; Fortune
and Rose, 2001). Short-term synaptic plasticity refers to a form
of use-dependent synaptic plasticity in which the strength of
an excitatory postsynaptic potential (EPSP) (or IPSP) can
decrease (short-term depression) or facilitate (short-term facili-
tation) in response to a sequence of consecutive presynaptic
spikes (Zucker and Regehr, 2002). For example, at cortical syn-
apses that exhibit short-term facilitation (most exhibit depres-
sion), the second of a pair of EPSPs separated by 100 ms might
be 25% larger than the first (Reyes and Sakmann, 1999)—this
facilitation typically decays with time constant on the order of a
few hundred milliseconds.

Figure 2C demonstrates how a simple disynaptic circuit
composed of synapses that exhibit short-term facilitation can
account for interval selectivity over a range of tens-to-hundreds
of milliseconds. The circuit is composed of a single input, and an
excitatory and inhibitory neuron—this disynaptic circuit com-
prises a virtually universal microcircuit architecture throughout
the mammalian nervous system. We can see that if both the
excitatory and inhibitory neurons receive input from synapses
with short-term facilitation, one can create an interval selective
neuron by adjusting the input weights. For example, let’s assume
the strength of the input synapse to the excitatory neuron is
suprathreshold for the 50- and 100-ms interval and suprathres-
hold for the inhibitory neuron only at 50 ms, then the excitatory
neuron can function as a 100-ms detector because the second
potentially suprathreshold EPSP of the 50-ms interval can be ve-
toed by activity in the inhibitory neuron. By parametrically varying
the weights of both synapsesi it is possible to create a neuron that
response selectively to the 50-, 100-, or 200-ms intervals, or
combinations of these intervals (Buonomano, 2000).

The interplay between short-term plasticity at excitatory and
inhibitory synapses creates a flexible set of mechanisms to
govern the temporal selectivity of neurons. Indeed, there is
significant experimental support for the notion that the time-
dependent shifts in the balance of excitation and inhibition
produced by short-term plasticity (STP) contribute to temporal
selectivity in electric fish and frogs (Carlson, 2009; Elliott et al.,
2011; Rose, 2014).

State-Dependent Networks. The above examples demon-
strate how time-varying neural and synaptic properties, such
as rebound excitation and STP, can underlie interval and dura-
tion selectivity in simple circuits. Much more general and power-
ful computational models have been put forth to account for how
cortical circuits might respond selectively to the spatiotemporal
structure of complex stimuli such as spoken words, as well as in-
tervals and durations. These interrelated models go by various
names including, state-dependent networks (SDNs) and liquid-
state machines (Buonomano and Merzenich, 1995; Maass
et al., 2002; Buonomano and Maass, 2009). Conceptually, the
SDN model proposes that the response of a population of neu-
rons at any moment in time is intrinsically dependent on the inter-
action between the current input and the current state of the
network (i.e., the context imposed by the previous sensory
events). The internal state in turn is defined not only by which
neurons are currently firing (the active state), but by the suite of
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time-dependent neural properties discussed above (referred to
as the hidden state) —such as which synapses are currently facil-
itated or depressed state. If we imagine an interval defined by
two tones separated by 100 ms, the first and second tone may
activate the same population of input fibers, but the population
of neurons activated by the first and second tone should be
different because the second tone will arrive when the network
is in a different state: e.g., the strength of some excitatory and
inhibitory synapses (the hidden state) during the first and second
tone should be different; thus, some neurons should respond
differentially (Buonomano and Merzenich, 1995; Buonomano,
2000; Pérez and Merchant, 2018). As originally proposed, in
SDN models the network is inactive in the absence of any stim-
ulus—i.e., the recurrent weights are not strong enough to sup-
port self-perpetuating activity —thus, the model cannot account
for anticipatory or motor timing.

SDNs are prototypical intrinsic models of timing in that they
propose that temporal selectivity arises as an inevitable conse-
quence of the rich collection of neural and synaptic properties
with time constants on the order of tens-to-hundreds of millisec-
onds. Because each sensory event is naturally encoded in the
context of the previous events, SDN models naturally account
for the discrimination of complex temporal and spatiotemporal
patterns, such as Morse code patterns or spoken words (Buono-
mano, 2000; Maass et al., 2004; Lee and Buonomano, 2012). The
state dependency of SDN models generate the prediction that
the detection of a specific interval should be impaired if it is pre-
ceded by a distractor tone presented at unpredictable time
points (e.g., it is difficult to compare a pure 100-ms interval to
a 100-ms interval that is embedded within a more complex
sequence). This prediction and related predictions have been
validated by psychophysical (Burr et al., 2007; Karmarkar and
Buonomano, 2007; Spencer et al., 2009) and electrophysiolog-
ical studies (Nikoli¢ et al., 2009).

Motor Timing
As defined above, we use the term motor timing to refer to tasks
that require an animal to actively produce a temporal pattern or
anticipate an external event. Prototypical motor tasks include
those in which animals or humans have to produce a simple in-
terval or complex motor pattern (Figure 1), as well as those in
which animals prepare or produce an anticipatory response to
an expected stimulus. Importantly, prediction and anticipation
do not only take the form of direct motor behaviors, such as
anticipatory licking or blinking, but can also take the form of tem-
poral attention. That is, much as we can focus our attention to
specific points in space during a visual detection task, we can
focus our attention in time during tasks in which a stimulus is ex-
pected to occur after a given interval. An example of a temporal
attention task (and the related phenomenon of implicit timing) is
the foreperiod task, in which a stimulus is presented at a fixed in-
terval after a warning signal. Temporal attention decreases reac-
tion time and increases performance—e.g., discrimination is
better in trials in which the stimulus occurs at the expected
time (Nobre et al.,, 2007; Jaramillo and Zador, 2011; Cravo
et al., 2013; Nobre and van Ede, 2018).

Because of the universal importance of the generation of com-
plex spatiotemporal motor patterns and of the ability to predict
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and prepare for external events, motor timing is critical to
many forms of learning, behavior, and cognition. Thus, it would
be surprising if all these abilities relied on a single neural circuit
or mechanism. Indeed, electrophysiological and imaging studies
have implicated a large number of brain areas in motor timing.
We first review the brain areas that have most consistently
been implicated in motor timing and then examine the neuro-
computational models of motor timing.
Basal Ganglia
The neurologist Oliver Sacks described a group of patients that
fell ill from an epidemic of encephalitis lethargica that swept the
world between 1918 and 1923 (Sacks, 1991). These patients ex-
pressed a variety of symptoms with respect to the timing of their
movements, some moving abnormally quickly, and others
abnormally slowly. More modern examinations of cases of en-
cephalitis lethargica have revealed apparent damage to BG
structures such as the striatum and midbrain dopamine neurons
that may be caused by an autoimmune response that preferen-
tially affects the BG (Dale et al., 2004). Consistent with these ob-
servations, aberrant time estimation has also been described in
those affected by Parkinson’s disease (Pastor et al., 1992; Mala-
pani et al., 1998), which is characterized by a loss of dopamine
neurons in the substantia nigra pars compacta. In fact, a range
of disorders affecting the BG including Parkinson’s disease,
Huntington’s disease (Freeman et al., 1996), Tourette’s (Vicario
et al., 2010), substance abuse (Wittmann et al., 2007), and atten-
tion deficit disorder (Noreika et al., 2013) have been associated
with altered sensation of time or temporally patterned behavior.
Last, lesions as well as pharmacological and genetic interven-
tions that affect striatal function in rodents have been shown to
cause disturbances in timing behavior (Meck, 2006; Drew
et al., 2007; Gouvéa et al., 2015; Mello et al., 2015). However,
BG activation has not always been observed during temporal
processing, and significant damage to the BG does not always
produce clear timing deficits (Coslett et al., 2010), which may
indicate either the degree of redundancy present among brain
mechanisms for timing or a special dependence on the BG for
timing processes with a motor component (Yin and Meck, 2014).
These observations broadly agree with data collected from
healthy human subjects using functional magnetic resonance
imaging (Schubotz et al., 2000; Nenadic et al., 20083), electroen-
cephalography (Pfeuty et al., 2003), and positron emission to-
mography (Jahanshahi et al., 2006), all of which have frequently
localized sensory and motor timing to circuits within or anatom-
ically connected to the BG. For example, during an interval
categorization task where subjects were trained to categorize
intervals as longer or shorter than a cued decision boundary of
either 450 or 1,300 ms, the right caudate was significantly acti-
vated as compared to a control task (Pouthas et al., 2005), irre-
spective of the cued condition, as assessed using fMRI. As in
other studies (Rao et al., 2001; Ferrandez et al., 2003), this acti-
vation was accompanied by activation in premotor cortex. While
these techniques combined with incisive behavioral task design
can allow for the localization of interval timing to different regions
of the brain, their spatial and/or temporal resolution is often too
coarse to reveal the nature of time encoding in these areas.
Electrophysiological studies in animal model organisms have
provided important clues as to how timing information is
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encoded by BG circuits. For example, in monkeys performing a
sequential saccade task, the varied response profile of striatal
neurons could be used to encode time between individual task
events (Jin et al., 2009). However, no explicit requirement to es-
timate time or to report a temporal judgment was present in this
task, leaving open the question of whether time information en-
coded by neurons would correlate with time judgments pro-
duced by the animal.

By systematically varying the temporal predictability of cues
eliciting movement, Sardo et. al (2000) were able to measure
differences in reaction time that reflected monkeys temporal
expectations of a stimulus. When tonically active neurons, pre-
sumed cholinergic interneurons, were recorded during this
behavior, a large fraction of cells modulated their cue response
depending on temporal predictability of the cue, demonstrating
that tonically active striatal neurons have access to a timing
signal (Sardo et al., 2000). Other studies have shown that infor-
mation about elapsed time is continuously available to BG cir-
cuits. GABAergic neurons in the substantia nigra of mice trained
to depress a lever for a minimum amount of time (Fan et al., 2012)
and striatal neurons recorded in rats trained to press a lever for a
reward delivered on a fixed interval reinforcement schedule (Ma-
tell et al., 2003; Mello et al., 2015), or mice trained to lick for
reward delivered after a fixed delay (Bakhurin et al., 2017), also
exhibited diverse temporal profiles that as a population encoded
information about elapsed time—that is the network imple-
mented a population clock. Interestingly, the response profiles
of many striatal neurons temporally rescaled in association
with changes in the interval between reward availability or timing
behavior (Mello et al., 2015). This suggests that the striatum may
encode information about relative as opposed to absolute time,
adapting to the relevant timescale in the current environment.
Time representations that temporally rescale may have impor-
tant implications for the learning processes that BG circuits are
thought to implement, as the temporal credit assignment
required for associative learning is thought to rely on the statis-
tics of relative, rather than absolute, timing of events in the envi-
ronment. Importantly, across multiple behavioral paradigms,
reversible inactivation of the striatum transiently reduced the
sensitivity of animal’s behavior to elapsed time (Meck, 2006;
Gouvéa et al., 2015; Mello et al., 2015; Wang et al., 2018).
Thus, it appears that the normal functioning of striatal popula-
tions is required and encodes information for guiding time-
dependent behaviors.

It is important to point out that, in many behavioral tasks,
behavior is continuously changing and non-repeating, and thus
neural responses that simply reflect ongoing behavior might be
misinterpreted as representing elapsed time. Indeed, many stria-
tal neurons respond around behavioral events. However, these
responses cannot be easily explained as simply motor in nature;
rather it is often the case that information about time and action
in multiplexed (Matell et al., 2003; Mello et al., 2015). In addition,
removing cells with responses locked to observed behaviors
does not remove all time information from striatal populations
(Bakhurin et al., 2017).

The above studies suggest a mode of time encoding by the
striatum wherein the speed with which populations of active
neurons progress through a spatiotemporal pattern of activity re-

flects the speed of an internal clock that animals use to guide
time-dependent behavior. What mechanisms might be respon-
sible for this variability in the speed of this population clock?
A recent neural network model demonstrated that sequential
neural activity can be generated using a striatum-like inhibitory
network, and that these sequences of activity across neurons
can be stretched or contracted by simply varying the magnitude
of a tonic excitatory input to the network or by varying the time-
constant of short-term synaptic depression of the synapses be-
tween striatal neurons (Murray and Escola, 2017). In the model,
tonic input is thought to originate in the thalamic or cortical inputs
to the striatum and serves to “select” which sequence of firing to
produce, whereas the cortical inputs act as a kind of tutor during
learning, training the striatal network to produce a particular
sequence via an anti-hebbian plasticity rule that is expressed
at recurrent synapses. This work highlights a few mechanisms
by which a kind of population clock may be instantiated and
modified by experience within BG circuitry; however, at its
core it is agnostic as to what upstream neurobiological factors
may cause changes in the parameters of short-term synaptic
plasticity or overall excitatory drive onto the network.

Midbrain dopamine neurons, in addition to encoding a reward
prediction error (Schultz et al., 1997), have been implicated in
timing (Malapani et al., 1998). These neurons project densely
to the striatum (Gerfen and Bolam, 2010) and can modify circuit
dynamics (Costa et al., 2006). For example, excitotoxic lesions of
dopaminergic input to the striatum using 6-hydroxydopamine
can render previously learned behavior insensitive to duration
(Meck, 2006), and overexpression of D2 type dopamine recep-
tors in the striatum can cause disruptions in timing behavior
(Drew et al., 2007). Interestingly, there is evidence that dopami-
nergic projections to more ventral striatum may not play a large
role in timing processes, as lesions of dopaminergic input to nu-
cleus accumbens or local infusions of drugs affecting dopamine
availability or receptor activation produce changes in the vigor of
behavior, but not its timing (Meck, 2006). However, a recent
study demonstrated that lesioning the ventral striatum in rats
could abolish signatures of a time-dependent component of
reward prediction error coding by dopamine neurons in the
ventral tegmental area, indicating that some time-dependent
computations might rely on more ventral regions in the striatum
(Takahashi et al., 2016).

The most direct assessment of the role of dopamine neurons
in time estimation comes from studies that measure and manip-
ulate dopamine neuron activity on a fast timescale during timing
behavior. During an interval categorization task, fiber photo-
metric recordings of dopamine neuron activity in the substantia
nigra pars compacta of mice revealed signals that reflected vari-
ation in internal time estimates (Soares et al., 2016). These
data were consistent with voltammetric recordings of dopamine
release in the striatum during a temporal bisection task (Howard
et al.,, 2017). By encoding reward prediction error, dopamine
neurons encode the degree to which an organism is surprised
by a reward, including when that surprise originates from uncer-
tainty about when a stimulus will occur (Pasquereau and Turner,
2015). However, optogenetic activation of substantia nigra pars
compacta (SNc) dopamine neurons caused underestimation,
and optogenetic inhibition of SNc dopamine neurons caused
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overestimation of interval duration, indicating that dopamine
neurons not only reflect information about estimates of elapsed
time but are capable of exerting control over those estimates
(Soares et al., 2016). Putting together the above observations,
an intriguing hypothesis emerges that dopaminergic projections
from the SNc to the striatum modify striatal population dynamics
in a manner that is linked with prediction error. When the world is
better than expected, phasic increases in dopamine neuron ac-
tivity may act to slow striatal population dynamics, either by
causing a net decrease in the excitatory drive to the striatal
network or by altering the dynamics of synaptic plasticity.
Such an effect may underlie common observations that fearful
or pleasurable experiences can have opposites effects on
perceived duration (Falk and Bindra, 1954; Gable and Poole,
2012; Fung et al., 2017). Future work involving the simultaneous
observation or manipulation of dopamine neurons while
recording from striatal populations during timing behavior will
be required to explore such hypotheses, and more generally to
understand the relationship between dopaminergic neuromodu-
lation and neural dynamics in recipient brain areas such as the
striatum.

Cerebellum

The cerebellum is one of the first structures to be implicated in
timing and hypothesized to serve as a critical structure for
many forms of timing in the subsecond range (Braitenberg,
1967; Ivry and Keele, 1989). Lesion and imaging studies suggest
the cerebellum is involved in sensory and motor timing tasks in
the subsecond range (lvry and Keele, 1989; Spencer et al.,
2003; Grube et al., 2010; Teki et al., 2011). The most compelling
evidence for a role of the cerebellum is probably in the context of
motor timing of eyeblink conditioning. In this associative learning
paradigm, an initially neutral conditioned stimulus (CS) is repeat-
edly paired with a delayed (e.g., 50-500 ms) unconditioned stim-
ulus (US) composed of a shock or airpuff delivered to the eye of
rodents or rabbits. Subjects learn to blink in anticipation of the
US delivery as learning progresses. Lesions of the cerebellar
cortex lead to the loss of proper timing of eye closure yet do
not prevent the CS from eliciting a blink response (Perrett
et al., 1993; Kalmbach et al., 2010). Mauk and colleagues first
suggested that the diverse temporal profiles of granule cell firing
triggered by CS input can act as temporal basis for learning
proper conditioned response timing (Mauk and Donegan,
1997; Medina et al., 2000). In this model, the temporal structure
of the granule cell activity forms a population clock that emerges
from a negative feedback loop between granule and Golgi neu-
rons. Coincident input from climbing fibers originating in the infe-
rior olive that signal US delivery and input from granule cells
active at the time of US delivery onto Purkinje cells are thought
to drive long-term depression of granule cell to Purkinje cell syn-
apses. Through learning, this would lead to a decrease in granule
cell excitatory drive onto Purkinje cells (which are inhibitory)
around the time of US delivery, leading to a decrease in Purkinje
activity and downstream disinhibition the cerebellar nucleus
generating a properly timed blink. While the mechanisms under-
lying timing in the cerebellum continue to be debated, it is well
established that the cerebellum plays a role in some forms of
motor timing (Kalmbach et al., 2010; Johansson et al., 2014;
Kennedy et al., 2014).
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Related cerebellar models account for how well timed predic-
tions are formed by neural circuits. Most notably in how timed
“negative images” of the sensory consequences of electric or-
gan discharge (EOD) in mormyid fish is learned and generated
(Kennedy et al., 2014). Again, the diverse profile of activity of
granule cells acts as a temporal basis set, the weighted combi-
nation of which can approximate the sensory consequences of
EOD alone. Interestingly, the kind of temporal basis functions
that has been ascribed to granule cell activity in the cerebellum
parallels a classical method for representing time within compu-
tational models of reinforcement learning (RL). RL models learn
predictions about future reward. Whereas the cerebellum has
been postulated to learn forward models that shape behavior
through a supervised learning process, the objectives of which
are to predict the sensory consequences of action, the BG are
thought to help learn to select actions that maximize future
reward.

Bird Song System

Studies in song birds have provided some of the clearest evi-
dence that population clocks in the form of sequential activation
of neurons underlie some forms of motor timing. The songs of
zebra finches are characterized by the temporal structure of
both individual syllables as well as of the entire sequence (Doupe
and Kuhl, 1999). And there is evidence that this temporal struc-
ture is governed by a population of neurons in area HVC; specif-
ically, the population of excitatory neurons that project to the
motor area RA have been shown to be activated in a chain-like
sequence (Figure 4D) (Hahnloser et al., 2002; Long et al., 2010;
Lynch et al., 2016). Such sequential activation could be imple-
mented by a simple feedforward connectivity; however, whole-
cell recordings reveal that these neurons also receive well-timed
subthreshold inputs at different times during the song (Long
et al., 2010), suggesting that the underlying dynamics might be
produced by a more complex recurrent architecture that results
in functionally feedforward activity.

As in other areas of the brain in which population clocks have
been observed, it is of course possible the sequential activation
of neurons in HVC does not constitute the timer per se but rather
reflects readout of a timer in upstream areas. However, the bird-
song system has allowed for experiments aimed at establishing
a causal relation between sequential neural activity and motor
timing. Specifically, it has been shown that cooling HVC uni-
formly slows song speed, whereas cooling the motor nucleus
RA does not dramatically alter song timing (Long and Fee,
2008). These experiments comprise some of the best evidence
to date of a causal link between the dynamics generated within
a local circuit and the timing of a motor behavior.

Cortical Circuits

Cortical circuits involved in the temporal control of behavior likely
span the entire spectrum from sensory cortex, to higher-order
associative areas, to motor cortex. For example, information
about the expected time of sensory events such as visual cues
has been observed in primary visual cortex of monkeys and
rats (Shuler and Bear, 2006; Sirotin and Das, 2009; Chubykin
et al., 2013; Gavornik and Bear, 2014), as has information about
the timing of impending actions (Namboodiri et al., 2015).
Furthermore, local optogenetic activation of rat visual cortex
can produce shifts toward earlier action timing (Namboodiri
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Figure 4. Examples of Experimentally
Observed Neural Responses and Simulated
Models of Timing

(A) Two ramping medial frontal cortex (MFC) neu-
rons recorded during trials in which the animal
anticipated reward availability at 3 or 12 s. Adapted
from Emmons et. al. (2017).
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et al., 2015), suggesting that primary visual cortex may have a
causal role in the production of visually cued timed actions.
Relatedly, single neuron and multiunit responses recorded in pri-
mary auditory cortex have been shown to encode information
about the timing of motor responses during auditory but not visu-
ally cued behavior (Brosch et al., 2005). Thus, primary sensory
cortex may play an important role in guiding motor timing by link-
ing modality specific sensory signals with properly timed
behavior.

At the opposite end of the sensory-motor continuum, and
perhaps less surprisingly, primary and higher motor cortical
areas have been repeatedly implicated in timed behavior. How-
ever, the specific contributions of different motor cortical regions
to timed action is not entirely clear. In one recent study, lesions of
primary motor cortex in rats trained to produce a 700-ms interval
resulted in minimal changes in motor timing when lesions were
performed in well-trained animals (Kawai et al., 2015). However,
similar lesions performed before training blocked learning of
appropriately timed behavior, suggesting that motor cortex
may be specifically involved in tutoring subcortical motor struc-
tures during learning but no longer drives execution of timed ac-
tions after learning. Results of lesioning motor cortex in animals
trained to perform a simple peak-interval timing procedure,

Time (ms)

that predicts a delayed reward (red arrowhead).
Cells are sorted according to the time of the peak
firing rate. Adapted from Bakhurin et al. (2017).
(F) Simulation of a firing-rate based RNN that
generates a complex population clock. Units are
sorted according to the time of peak activity after
the end of the input (blue bar). Adapted from Laje
and Buonomano (2013).

(.

which involves motor timing over the
longer scale of tens of seconds, similarly
do not seem to affect action timing. How-
ever, those same lesions do disrupt
timing behavior during a modified peak in-
terval procedure wherein two stimuli must
be timed concurrently, suggesting that
primary motor cortex may play an impor-
tant role in splitting timing resources between multiple tasks (Ol-
ton et al., 1988), even after extensive training. Interestingly, many
more neurons in primary motor cortex responded to concurrently
presented timing cues but not to single timing cues than re-
sponded to any of the timing cues when they were presented
in the simple, single-interval timing condition (Pang et al., 2001).

Electrophysiological studies performed in awake-behaving
animals performing timing tasks have revealed that neural
activity in a wide range of cortical areas encode time—i.e., it is
possible to estimate elapsed time from the patterns of neural ac-
tivity. Furthermore, the temporal variability of the neural code for
time correlates with the timing of the motor responses—i.e.,
when the “neural code” runs faster than average the motor re-
sponses are produced earlier than average. In addition to the
sensory areas described above, encoding of elapsed time has
been reported in parietal (Maimon and Assad, 2006; Jazayeri
and Shadlen, 2015), prefrontal (Xu et al., 2014; Emmons et al.,
2017; Wang et al., 2018), premotor (Crowe et al., 2014; Murakami
et al., 2014; Merchant and Averbeck, 2017), and motor cortices
(Renoult et al., 2006), and, recently, responses reflecting the de-
cision boundary in an interval-discrimination task were reported
in pre-supplementary motor cortex (Mendoza et al., 2018). As
described below, these neural codes for time take various
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forms—from monotonic ramping of single neurons, to sequential
activation of neurons, to complex spatiotemporal patterns of ac-
tivity (Figure 4). One recurring feature in some of these studies is
the presence of response dynamics that temporally rescale with
action timing. Such patterns of activity represent a widespread
and powerful mechanism for motor timing. This is because if ac-
tion initiation is triggered by entry into a particular network state,
timed actions or decisions could be produced by simply modu-
lating the speed with which neural populations progress from
some initial condition to an action or decision initiation state
(see below).

The above results suggest that cortical circuits are involved in
a broad range of timing functions and that timing is a general
computation of cortical circuits. Further support for this view is
provided by studies showing that in vitro cortical circuits can
adapt to, and in a sense anticipate, the timing of temporal
patterns administered in vitro (Johnson et al., 2010; Chubykin
et al., 2013; Goel and Buonomano, 2016). Overall, there is
converging in vivo, in vitro, imaging, and lesioning data that sug-
gest that cortical circuits are intrinsically able to process tempo-
ral information and do so on an “as-needed basis.”

Models of Motor Timing

Traditionally, most models of timing have focused on motor
timing—i.e., timers or clocks that can actively report elapsed
time. As emphasized earlier, these models can certainly be
used for sensory timing tasks—but sensory timing models are
not well suited for motor tasks. Here, we review three broad clas-
ses of models of motor timing. Our classification is based on the
fundamental basis of timing per se as opposed to the readout
mechanism: (1) oscillator-based models; (2) ramping models;
and (3) population clocks. We focus primarily on models that
are implemented with attention to neurobiological plausibility.
Oscillator-Based Models. The first models of timing on the scale
of milliseconds to seconds are referred to as internal clock or
pacemaker-accumulator models (Creelman, 1962; Treisman,
1963). In their simplest form internal clock models mirror the prin-
ciples of man-made clocks: an oscillator generates periodic
events that are integrated or counted by an accumulator. While
more sophisticated versions of the internal clock model—most
notably scalar expectancy theory (Gibbon, 1977) have proved to
be very valuable in guiding behavioral and psychophysical exper-
iments, there is very little biological support for the standard pace-
maker-accumulator models. It is important to note that many of
these pacemaker-accumulator models can also be implemented
as “accumulator” models in which the pacemaker is replaced with
atonicinput that generally takes the form of a fixed firing rate with a
Poisson distribution. Such models are essentially equivalent to the
ramping models discussed below (Luzardo et al., 2017).

Other examples of oscillator-based models rely on the notion
that time is encoded in a population of oscillators with different
periods (Miall, 1989; Matell and Meck, 2000, 2004). For example,
a 1-s interval might be encoded by the coincident activity of a
10-, 4-, and 3.33-Hz oscillator. The most detailed version of
this multiple oscillator model is referred to as the striatal beat fre-
quency model, which suggests that distributed cortical circuits
contain a population of neurons oscillating at a range of different
frequencies, and that the medium spiny neurons of the striatum
function as coincidence detectors (Matell and Meck, 2004;
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Buhusi and Meck, 2005)—capturing the beats of the cortical os-
cillators. As discussed above, there is abundant evidence that
the BG contribute to many timing tasks, but there is little evi-
dence that detecting the beats of cortical oscillators represents
the underlying mechanism. Indeed, it seems unlikely that the
sequential activation of MSN neurons observed during timing
tasks (Gouvéa et al., 2015; Mello et al., 2015) is consistent with
the striatal beat frequency (SBF) model.

While there is little experimental support for oscillator-based

mechanisms for timing, it is important to emphasize that it is
well established that oscillators do contribute to timing of rhyth-
mic motor behaviors. The distinction lies in the difference be-
tween supra- and sub-period timing. As proposed in the internal
clock model the time intervals being measured are above the
period of the time base (supra-period timing). Sub-period timing
refers to cases in which the temporal structure being produced
lies below the period of the oscillator—i.e., time is coded in the
phase of the oscillator. The circadian clock provides a clear
example of the subperiod and supraperiod distinction: the circa-
dian clock accurately times intervals below its period, but the
neurons in the suprachiasmatic nucleus do not keep track of
supraperiod intervals (the number of oscillations they have un-
dergone). Many rhythmic motor behaviors that require tightly
timed sequential responses—such as walking, breathing, and
swimming—are governed by the phase of neural oscillators
(Marder and Calabrese, 1996; Grillner, 2003; Feldman and Del
Negro, 2006).
Ramping-Based Models. Ramping models of timing refer to
those in which a neuron or population of neurons undergo an
approximately linear increase (or decrease) in firing rate over
time —thus producing a metric of elapsed time encoded in neural
firing rate (Figure 4A). There are abundant data showing that,
during interval motor timing tasks, neurons in the parietal cortex
(Leon and Shadlen, 2003; Janssen and Shadlen, 2005; Jazayeri
and Shadlen, 2015), prefrontal cortex (Niki and Watanabe, 1979;
Kim et al., 2013; Emmons et al., 2017; Kim et al., 2017), and pre-
motor and motor cortex (Mita et al., 2009; Murakami et al., 2014)
all exhibit approximately linear ramping of firing rates during mo-
tor timing tasks. It is generally the case that a timed motor
response is generated when a population of ramping neurons
reaches a given firing rate threshold. Importantly, the slope of
the ramp generally decreases as the interval being timed in-
creases, while the peak firing rate remains approximately the
same. (Leon and Shadlen, 2003; Murakami et al., 2014; Jazayeri
and Shadlen, 2015; Merchant and Averbeck, 2017).

Since neurons have time constants on the order of tens of mil-
liseconds, and ramping has been observed over scales of sec-
onds, ramping models generally require some sort of positive
feedback mechanism to integrate information and counterbal-
ance membrane “leak.” Cellular- and network-based mecha-
nisms have been proposed to underlie ramping. Cellular-based
mechanisms refer to those in which a single neuron can integrate
input and produce a ramp in firing rate. One such model pro-
poses that tonic synaptic input opens voltage-gated Ca®* chan-
nels, which in turn activate depolarizing currents resulting in pos-
itive feedback and a linear increase in firing rate (Durstewitz,
2003; Hass and Durstewitz, 2014). Most ramping models, how-
ever, rely on network mechanisms in which positive feedback



Neuron

is implemented via recurrent excitatory connections (Reutimann
et al., 2004; Gavornik et al., 2009; Simen et al., 2011; Lim and
Goldman, 2013). In their simplest form, such ramping or drift-
diffusion models do not generally account for Weber’s law. How-
ever, a model that has been implemented at the neural level, and
referred to as a time adaptive opponent Poisson drift-diffusion
model, captures Weber’s laws by incorporating both excitatory
and inhibitory feedback (Simen et al., 2011; Balci and Simen,
2016; Merchant and Averbeck, 2017).

While many neurons exhibit ramping during tasks in which an-
imals produce a timed motor response or anticipate a reward, it
is not clear whether ramping neurons are the actual timer or
rather reflect the preparation of a motor response—and are
thus better thought of as the readout of upstream timing circuits.
During most tasks, timing and motor response preparations are
confounded, but it is possible to dissociate them if the timing of
an expected stimulus is bimodally distributed. For example, if a
stimulus is expected at either 0.5 or 2 s, animals can learn the
hazard rate (reaction times will be minimal around 0.5 and 2 s).
If ramping neurons encode absolute time, they would be ex-
pected to exhibit an increase in firing throughout the duration
of the task. In contrast, if they are encoding motor preparation
or expectation, their firing rate should follow the hazard rate (in-
crease around 0.5 s, decrease, and then increase again). This
experiment has been performed while recording from ramping
neurons in the parietal cortex, and the results show that these
neurons encode the probability of the stimulus rather than abso-
lute time (Janssen and Shadlen, 2005). It is not that timing signal
need be monotonically changing but rather that the ramping
often interpreted as timing signals may instead reflect functions
such as action preparation that are driven by upstream timing
signals.

Thus, while there is abundant experimental evidence that

many neurons exhibit ramping firing rates during timing tasks,
many issues remain to be addressed. In addition to whether
ramping encodes time or motor preparation/expectation, it is
not clear whether ramping reflects the timer per se or is pro-
duced by appropriately tuning the weights of upstream neurons
that encode time through changing patterns of neural activity
(Buonomano and Laje, 2010). Indeed, recent experimental
evidence in CA1 place cells suggest that linear ramping of mem-
brane voltage over 1-2 s is produced by sequentially active CA3
neurons with progressively stronger synaptic weights (Bittner
etal., 2017).
Population Clocks. The term population clock refers to models
in which time is encoded in the changing population of neural ac-
tivity (Buonomano and Karmarkar, 2002). Thus, population
clocks rely on a general property of neural circuits: their internal
neural dynamics. We can think of a population clock as a neural
trajectory in N-dimensional space, where N is the number of neu-
rons participating in the population clock and each point on the
trajectory codes for a moment in time (Figure 4). If these patterns
are reproducible and unique at each moment in time, it is
possible for downstream neurons to readout elapsed time.

Critical to the notion of population clocks is that the trajec-
tories emerge from dynamics of the neural circuits; that is,
the patterns occurring early in the trajectory are causally
responsible for the later patterns. Thus, a simple array of

non-interconnected neurons, each firing at different latencies
(e.g., a labeled line model), would not constitute a population
clock because the activity of the neurons firing later are inde-
pendent of the activity of the neurons firing earlier. Popula-
tion-clock models propose that a given neural trajectory
encodes time from the onset of a given stimulus, or relative
time depending on the context (e.g., producing the same motor
pattern slowly or quickly may rely on very similar neural trajec-
tories evolving at a fast or slow speed, respectively). In other
words, one stimulus might elicit neural trajectory T; and
another stimulus a distinct trajectory T,—thus, the same popu-
lation of neurons encode time from the onset of each stimulus.
The advantage of these stimulus-specific “clocks” is that the
population encodes not only time but the stimulus—in other
words, temporal and spatial processing are intertwined.
Computationally, this offers many advantages. For example,
the first population-clock models were proposed in the context
of the cerebellum in which the changing population of granule
cells encode time since stimulus onset (Buonomano and
Mauk, 1994; Mauk and Donegan, 1997) in order to account
for the timing of conditioned responses. Since population
clocks are inherently capable of encoding both the stimulus
and elapsed time, it is relatively easy to account for the ability
of distinct stimuli to elicit differentially timed response.

Population clocks can potentially take various forms, from
sparse chain-like sequences of neural activation, to complex tra-
jectories in which neurons can exhibit mononotonic and nonmo-
nontonic temporal activity profiles. Evidence for both sparse
(Figures 4C and 4D) and complex (Figures 4E and 4F) population
clocks have been observed throughout the brain, including pari-
etal cortex (Stokes et al., 2013; Crowe et al., 2014), premotor and
motor cortex (Carnevale et al., 2015), frontal cortex (Wang et al.,
2018), prefrontal cortex (Bakhurin et al., 2017), BG (Jin et al,,
2009; Gouvéa et al., 2015; Mello et al., 2015; Bakhurin
et al., 2017), hippocampus (Pastalkova et al., 2008; MacDonald
et al., 2011), and in song birds (Hahnloser et al., 2002;
Lynch et al., 2016)—although in most of these cases, it is not
known whether the dynamics is generated within the circuit be-
ing recorded or rather driven by upstream circuits. But in many of
these experiments, as mentioned above, it has been demon-
strated that the speed of the population clock co-varies with
behavior—i.e., when the population clock runs early in relation
to the mean, so does the timed behavior (Crowe et al., 2014;
Gouvéa et al., 2015; Bakhurin et al., 2017). Furthermore, some
studies suggest that the individual neurons that compromise a
population clock may reflect Weber’s law; e.g., the half-width
of the peak response can increase with the time of this peak
(Mello et al., 2015; Tiganj et al., 2017).

Computational models have proposed that sparse population
clocks (in which each neuron is active only once during a trajec-
tory) are produced by synfire chains or functionally feedforward
patterns of activity (Goldman, 2009; Liu and Buonomano, 2009).
In these sequential trajectories, readout is very straightforward,
as each neuron represents a given amount of elapsed time (or
a “time field”). A number of models have proposed how sparse
population clocks can emerge in a self-organizing manner (Buo-
nomano, 2005; Liu and Buonomano, 2009; Fiete et al., 2010;
Miller and Jin, 2013). The general idea is that homeostatic and/or
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associative forms of plasticity lead to the emergence of recurrent
neural networks with an embedded feedforward architecture.
More complex population clocks can take the form of patterns
in which the temporal profiles of neurons is distinct and a given
neuron might be active multiple times during trajectory —thus
resulting population histograms that do not result in a simple
diagonal line of latency-sorted neurons. Models of complex
population clocks rely on relatively strong feedback inherent
to recurrent neural networks. Specifically, networks with strong
recurrent connections are capable of generating continuously
changing patterns of self-perpetuating activity, and when the
recurrent weights are appropriately tune the resulting neural
trajectories can robustly encode time (Laje and Buono-
mano, 2013).

In contrast to ramping models, population clocks lack an
intrinsic metric of time. For example, in a linearly increasing
ramping model, if a cell fired at 5 Hz at the end of one interval
and at 10 Hz at the end of another, we can infer that more time
elapsed during the second interval. In contrast, in a popula-
tion-clock model, if cell X was firing at the end of one interval
and cell Y at the end of another, there is no inherent metric
that allows one to infer a priori which interval was longer. Unless,
of course, the code has been previously learned. This can be
achieved, for example, by having a population clock drive the
ramping of a readout neuron (Buonomano and Laje, 2010). While
the encoding of some sensory features do have intrinsic metrics
(e.g., firing rate is often monotonically related to stimulus inten-
sity), many other features, including spatial localization and the
orientation of lines, also don’t have an intrinsic metric and thus
require establishing a mapping between neurons and the rele-
vant stimulus dimension to make quantitative judgments about
left/right or clockwise/counterclockwise.

Both ramping and population-clock models have been shown
to be able to account for an important feature motor timing: tem-
poral scaling. Specifically, motor behaviors such as playing a
musical instrument can be executed at different speeds. In the
case of ramping models, the slope of the firing rate can be
altered by changing the magnitude of the tonic input that is being
integrated—thus increasing or decreasing the amount of time
the integrator takes to reach some threshold (Simen et al.,
2011; Murakami et al., 2014). In the case of population clocks,
it has been shown that the trajectories produced by firing-rate
based recurrent neural networks (RNNs) can be traversed at
different speeds. Again, changing the magnitude of a tonic input
to appropriately trained RNNs can produce very similar neural
trajectories that are traversed more quickly or slowly (Hardy
et al., 2017; Wang et al., 2018)—these “parallel trajectories” lie
along a manifold in phase space. As mentioned above, temporal
scaling of a sparse population clocks has also been imple-
mented in a striatal model (Murray and Escola, 2017). This model
relies on the fact that high-firing rates can accelerate short-term
depression of inhibitory synapses, again accelerating the trajec-
tory. While both ramping and population clocks can account
for temporal scaling, a strength of population-clock models is
that they are better suited to account for pattern timing—that
is, generate complex spatiotemporal patterns, such as those
that underlie speech or Morse code (Hardy and Buono-
mano, 2016).
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Conclusions

It is increasingly well accepted that the ability to tell time, to pre-
dict when events will happen, and to process and represent tem-
poral patterns are among the brain’s most important and basic
functions (Meck and Ivry, 2016; Buzsaki and Llinas, 2017).
Thus, understanding the neural basis of timing and temporal pro-
cessing will be a critical step toward generating general theories
of sensorimotor processing, learning, and cognition. Here, we
emphasize that precisely because of the importance of time to
so many distinct aspects of brain function there is not a specific
mechanism or area underlying timing, any more than there is a
single area responsible for processing and representing informa-
tion about space. Depending on the timescale of interest and the
computational requirements of the task, the brain engages a di-
versity of mechanisms and areas to tell time, and to processes
temporal patterns.

We argue that one of the most general mechanisms contrib-
uting to timing across many different areas and tasks is the
inherent cellular and network dynamics of neural circuits.
Neurons and neural circuits are richly dynamical systems, and
this dynamics likely evolved in part to allow the brain to capture
time and process temporal information. Conversely, the brain’s
natural dynamics was likely coopted to solve many types of tem-
poral problems. This is not to say that there are not some special-
ized or centralized areas underlying some forms of timing in the
millisecond to seconds range but rather that questions about the
neural basis of timing must be placed in the context of the task at
hand and the computational requirements of the task.

Future advances in the timing field will rely in part on an
improved taxonomy of time. That is, a better understanding of
which types of tasks and problems use shared mechanisms
and circuits. Additionally, one of the most pressing problems in
the timing field is the need to establish a causal relationship be-
tween the neural patterns of activity that seem to underlie many
forms of timing and behavior. Given the evidence that timing is
intrinsic to many neural circuits—and that even within the
same task different areas may contribute to timing—such exper-
iments are likely to be even more challenging than in other fields
of systems neuroscience. Nevertheless, optogenetic and tem-
perature manipulations that specifically slow or accelerate neu-
ral trajectories underlying population clocks offer promising
approaches.
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