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Numerous studies have suggested that the brain may encode information
in the temporal �ring pattern of neurons. However, little is known regard-
ing how information may come to be temporally encoded and about the
potential computational advantages of temporal coding. Here, it is shown
that local inhibition may underlie the temporal encoding of spatial im-
ages. As a result of inhibition, the response of a given cell can be signif-
icantly modulated by stimulus features outside its own receptive �eld.
Feedforward and lateral inhibition can modulate both the �ring rate and
temporal features, such as latency. In this article, it is shown that a simple
neural network model can use local inhibition to generate temporal codes
of handwritten numbers. The temporal encoding of a spatial patterns has
the interesting and computationally bene�cial feature of exhibiting posi-
tion invariance. This work demonstrates a manner by which the nervous
system may generate temporal codes and shows that temporal encoding
can be used to create position-invariant codes.

1 Introduction

Experimental (McClurkin, Optican, Richmond, & Gawne,1991; Middle-
brooks, Clock, Xu, & Green, 1994; Bialek, Rieke, Ruyter van Steveninck,
& Warland, 1991) and theoretical (Hop�eld, 1995; Thorpe & Gautrais, 1997)
studies have suggested that the nervous system may encode information
in the temporal structure of neuron spike trains, generally referred to as
temporal coding. For example, McClurkin et al. (1991) have shown that by
taking into account the temporal structure of neuronal responses to Walsh
patterns, there is more information about the stimuli than there is in the �r-
ing rate alone. However, in addition to showing that there is information in
the temporal structure of spike trains, at least two additional issues relating
to temporal encoding must be addressed: (1) How does sensory information
come to be temporally encoded? (2) How is temporally coded information
used or “decoded” by the nervous system? Here we focus on the �rst ques-
tion and consider the potential advantages of encoding information in the
temporal domain.
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In principle, any of the many neuronal properties that affect the balance
of excitation and inhibition can produce signi�cant changes in the temporal
structure of neuronal responses. If the temporal structure is to contain infor-
mation about a given stimulus, it should be reproducible and stimulus spe-
ci�c, and should be amenable to stimulus generalization. Local inhibitory
interactions, which include both feedforward and lateral inhibition, may
provide a neural mechanism that satis�es these conditions. Local inhibi-
tion is an almost ubiquitous feature of neuronal circuits and typically has
been thought to be a means of preventing cells from �ring or of modulating
the average �ring rate of neurons. However, inhibition can also shape the
temporal structure of responses by modulating when a neuron will reach
threshold. As a result of local inhibition, both the �ring rate and temporal
structure of neuronal responses can be signi�cantly altered by neighboring
neurons and may contain information not only about their own receptive
�elds but also about the local spatial structure of stimuli. Changes in the
temporal structure of neuronal responses can be manifested in various de-
grees of complexity. The simplest feature that may be changed, from both an
encoding and decoding perspective, is spike latency, which we will consider
here.

One possible advantage of temporal encoding is that the amount of in-
formation that can be potentially transmitted on a per-spike basis is larger
than that transmitted by a rate code. An alternate or additional advantage
of temporal coding is that once spatial information is temporally encoded,
it can potentially represent spatial patterns in a position-invariant manner.
Position invariance has proved to be an extremely challenging problem,
from the perspective of understanding how the brain solves it and in de-
veloping arti�cial systems capable of invariant pattern recognition. In their
simplest forms, conventional neural networks do not exhibit position in-
variance because information is stored in the spatial pattern of synaptic
strengths. Figure 1 provides a schematic illustration of why conventional
neural networks are not generally well suited to solve position invariance.
If a unit is to behave as a C detector, the connection strengths of the weight
matrix are distributed in a fashion that spatially re�ects the C symbol. If
the C is shifted to different positions on the input layer, the C detector
may develop responses to other stimuli. To circumvent this problem, var-
ious biologically plausible models have been proposed that are capable of
exhibiting different forms of invariant pattern recognition. One approach
has been to develop large-scale multilayer networks, in which each layer
exhibits position invariance to higher-order features (Fukushima, 1988). A
second approach has been to develop networks capable of dynamically
changing the local connectivity (Olshausen, Anderson, & Van Essen, 1993;
Konen, Maurer & von der Malsburg, 1994), or the local gain of the network
(Salinas & Abbott, 1997), thus essentially accomplishing online translation
and scaling of images. Here we develop an alternative hypothesis based on
temporal coding.



Neural Network Model 105

Figure 1: Schematicof the position-invariant pattern recognition problem. (A) In
a conventional one-layer network, the creation of a “plus” detector essentially
consists of connecting the spatial arrangement of units activated by the C to a
plus-detector output unit. (B) If the same plus detector is also going to detect
a C in a different position, such as the lower left corner, the units activated by
that C will also be connected to the plus detector. In the process, other patterns,
such as a square (bold outline), will also activate the plus detector.

2 Methods

Figure 2 schematizes the type of feedforward, surround inhibition used in
the model. Figure 3 shows a simple network that captures the basic princi-
ples of our model. Below we explain in detail the more complex network
used for handwritten digit recognition.

Each unit from the input layer (the “retina”) provides an excitatory input
to the topologically equivalent position in the feature detector layer (anal-
ogous to L-IV of V1), and inhibition to the neighboring units in a surround
inhibition pattern. Each point in the feature detector layer had four types
of line detectors (vertical, horizontal, and two diagonals). Each feature de-
tector unit was activated if �ve appropriately aligned input units were on.
The feature detector layer provided input to the “cortical” layer (analogous

to L-II=III of V1). The voltage (V f
i ) of a cortical unit in position i, and of
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Figure 2: Schematic of the circuit used for feedforward, center surround inhi-
bition. Units from the input layer provide excitatory input to the topologically
equivalent unit in the next layer and inhibitory connections to the neighboring
units.
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I f
i represents the binary input from the unit in position i and of orientation
f from the feature detector layer. The third term represents the inhibition,
which is implemented in a cross-orientation manner; for example, each ver-
tical unit receives inhibition from the horizontal and two diagonal input
layers. The weights, Wij , are a function of the distance from unit i and of the
difference in orientation preference between the units:

Wij D KF ¢ exp.¡ki ¡ jk/ ¢ KInh ; (2.2)

where KF D 1 when the orientation of i and j differs by 90 degrees and
KF D 0:66 when they differ by 45 degrees. The fourth term in equation 2.1
represents iso-orientation excitation; a vertical unit will excite neighboring
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Figure 3: A simple retinal model with inhibition can create position-invariant
temporal codes. (A) The �rst column of each row represents the input pattern—
either a C or a T at two different positions. The subsequent columns represent
frames of the voltage of each element in time. Voltage is represented on gray
scale. A unit in white represents those that have reached threshold. Since we
are interested in onset latency, what happens after a unit reaches threshold
is not relevant, and it is assumed that each element stays on. The time step
at which threshold was reached de�nes the latency of that unit. The latency
histogram produced by each image is represented in the last column. The y-
axis represents the number of activated units at a given latency. (B) Schematic
diagram of a network that could use latency histograms for position-invariant
pattern recognition (empty and �lled bars represent C and T, respectively). The
latency code is used as spatial code in which each unit corresponds to a latency
and serves as the input to the recognition network.

vertical units that are vertically aligned, but not vertical units that are hori-
zontally aligned with it. For excitatory weights Wij D C ¢0:04, where C is 1.0,
0.67, or 0.0, when j is positioned above or below, diagonal to, or lateral to
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i, respectively, for a vertical unit. Such iso-orientation topography has been
reported experimentally (Fitzpatrick, 1996). Threshold was arbitrarily set at
1, and V.0/ D 0.

One important parameter is the radius of the of the feedforward inhibi-
tion. If the radius is too small in relation to the size of the image, all local
interactions are likely to be expressing local noise rather than the relevant
structure. Conversely, a large radius will tend to “normalize” all responses
according to overall activity, and not express any local structure. In the cur-
rent simulations, an inhibition radius of 3 was found to be optimal. Within
a fairly wide range, changes in the excitation KEx and inhibition KInh con-
stants did not dramatically affect performance as long as inhibition was
strong enough to modulate the latency. In the simulations presented here,
the values of KEx and KInh were 0.26 and 0.002, respectively.

2.1 Recognition Network. The second component of the model con-
sisted of a recognition network, which was necessary in order to determine
whether the temporal codes generated could actually be used for position-
invariant pattern recognition. For this purpose, it is necessary to decode
the temporal code. Decoding temporal codes is critical not only when the
nervous system may use internally generated temporal codes, but in tem-
poral processing in general, an important and dif�cult problem faced by
the brain and arti�cial networks processing time-varying signals, such as
speech. Presenting a realistic model of temporal processing is far beyond the
scope of this article. Indeed, it is because the decoding of complex temporal
codes can easily become intractable that we chose to analyze latency of the
�rst spike.

To decode temporal information—that is, transform a temporal code into
a spatial code—we assumed the presence of delay lines (e.g., Tank & Hop-
�eld, 1987; Waibel, 1989), in which hypothetical delays are used to gener-
ate elements sensitive to temporal features, speci�cally latency. In practice,
each of the latency histograms represents the output of the delay line model.
Each bin represents the output of a single element tuned to a given delay
(schematized in Figure 3b).

The next step was to determine whether once the latency codes are
mapped spatially, they can be used for digit recognition. For this purpose,
the output of the delay line network was used in a conventional backprop-
agation network (Rumelhart & McClelland, 1986). Since each orientation
sublayer generates a temporal code, and only 10 different latencies were
considered, the input to the backpropagation network consisted of a sin-
gle vector of length 40. The backpropagation network contained 16 hidden
units and 10 output units (one for each numeral).

The handwritten digit database was obtained from the National Insti-
tute of Standards and Technology. The samples used here were from the
Handprinted Character Database, subdirectory f13/�3/data/f0035, which
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comprise characters from a single writer. The raw images were used; that
is, no scaling or normalization was performed.

3 Results

Figure 3 illustrates a simple network that captures the fundamental proper-
ties of our model, in which temporal codes of images are generated with the
use of local inhibition. These codes can be then used by a second network for
position-invariant pattern recognition. In this simpli�ed network, a single-
layer network of linear-threshold units was used. Each “pixel” of the input
stimulus excites a unit in the corresponding position of the network and
inhibits neighboring units (see Figure 2). During each time step, the sum
of excitation and inhibition was computed. If the sum reaches threshold, a
spike occurs. In the simulations considered here, only the �rst spike is rele-
vant; once a unit has �red, it remains on. The latency is de�ned as the time
step at which threshold was reached. In the simulation shown in Figure 3A,
two symbols (T and C), each composed of a single vertical and horizontal
line, were presented to the network, each at two different locations. For the
C , the four extremes reached threshold �rst and �red at t D 2. These four
units �red �rst because each receives inhibition from only one inhibitory
input. The center unit will be the last to �re at t D 8, because it is inhibited
by four neighboring units. In contrast for the T, three extreme units will �re
�rst, followed by their neighbors, until the innermost unit �res. The plots
on the right of Figure 3A show the latency histograms of the network. Note
that the latency histograms are distinct for the T and C and are indepen-
dent of position. Figure 3B illustrates how the latency distributions could be
used for position-invariant pattern recognition. Using a traditional neural
network architecture, the latency histograms serve as the input patterns,
and each output unit becomes a pattern detector. An implicit step in this
process is to transform the temporal code into a spatial code. For example,
this can be accomplished using tapped delay lines.

To determine whether neural networks that generate temporal codes
can be used to recognize real-world patterns, we developed a network and
tested it with handwritten digits placed in different locations on the input
layer (see Figure 4). The network consisted of an input layer, a feature de-
tection layer, and a “cortical” layer. The feature detection and cortical layer
each contained a complete topographic representation of four different ori-
entations. The feature detection and cortical layer can be best visualized as
each containing four distinct sublayers, one for each orientation: vertical,
horizontal, and two diagonal sublayers. Lateral interactions take place in the
cortical layer in the form of cross-orientation inhibition and iso-orientation
excitation.

Figure 5 shows the result of a simulation. The input pattern activates the
appropriate units on the vertical, horizontal, and diagonal feature detector
layer. The feature detector layer projects to the cortical layer, in which the
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Figure 4: Handwritten digits used to test position-invariant pattern recognition.
Digits were obtained from a National Institute of Standards and Technology
database in a 32 £ 32 pixel format. Each digit was placed at random location on
a 64 £ 64 input layer in order to test for position invariance.

total inhibitory and excitatory input is computed for each unit on each time
step. For visualization purposes, the cells of the same orientation preference
are shown as a separate sublayer. This is similar to looking down on V1 and
looking at all horizontal, vertical, and diagonal cells separately. Each of the
four cortical sublayers generates a latency histogram, which represents how
many units �red at each time step (only the �rst spike is relevant). To de-
termine whether these temporal codes latency histograms are suf�cient to
code for all digits in a position-independent manner and if it could gener-
alize across samples, we presented 100 handwritten digits to the network
(see Figure 4). Each 32 £ 32 digit image was placed at a random location
on the 64 £ 64 input layer. Each of the 100 sets of four latency histograms
served as an input vector to the recognition network, which was a standard
backpropagation network. Figure 6A (upper panel) shows an example of
the 50 latency histograms used for testing. The latency histograms for each
of the sublayers are placed in a single row. The recognition network was
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Figure 5: Simulation of digit recognition. An image is presented to the input
layer, which is preprocessed bya feature detector layer. The feature detector layer
has four types of orientation detectors: vertical, horizontal, and two diagonal
lines. For visualization, each type of detector is presented as a separate sublayer.
The feature detector layer then projects to a “cortical” layer, which also contains
a representation of each orientation. Units in the feature detector layer inhibit
units in the cortical layer in a cross-orientation fashion and excite them in an
iso-orientation fashion. The voltage in the cortical units is shown at t D 10.
When and how many cells reached threshold at a given time step is shown in
the latency histograms on the right.

trained on 50 latency histograms (5 of each digit), and then tested on the
remaining 50 patterns. The lower panel in Figure 6A shows the output of
the recognition network in response to the 50 test latency histograms. In this
run, 48 of 50 digits were correctly classi�ed. The average performance was
93:4 § 0:16%.

It is important to determine that the performance of the network is de-
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Figure 6: (A) Latency histograms for the 50 digits used to test network perfor-
mance represented in a gray-scale code (upper panel). A black point means that
no units �red at that latency in response to a given digit; white means that a
maximal number of units �red at that latency. The lower panel represents and
the output of the backpropagation network in response to the 50 test digits,
after training on the 50-digit learning set. (B) Control histograms in which tem-
poral information is collapsed (upper panel) and output of the backpropagation
network trained on the control stimulus set.

pendent on temporal information rather than on spatial information. Since
there are four different types of feature detectors, there is information con-
tained in the total number of spikes from each feature detector sublayer
irrespective of temporal structure. For example, since the number 1 essen-
tially corresponds to the vertical feature detector, it is unlikely that temporal
information is contributing to its recognition. To examine the contribution
of the latency code, temporal information was removed by collapsing each
of the four latency histograms into a single time bin and training the same
recognition network on the collapsed input vectors. The upper panel in
Figure 6B shows the input patterns for the 50 test stimuli when the latency
histograms are collapsed across eachof the four cortical sublayers. The lower
panel in Figure 6B shows the output of the pattern recognition networks.
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In this example, 33 of 50 of the digits were correctly classi�ed. Note that, as
expected, the exemplars of digit 1 were well classi�ed based solely on spa-
tial information. On average, performance was below 70% in the absence of
temporal information.

In neural network models, it is generally important to determine how
noise affects the performance of the network. Both extrinsic and intrinsic
noise sources should be considered. Extrinsic noise refers to the noise or
variability of the stimulus set. Since we have used a real-world stimulus set,
the model presented here clearly performs well with the inherent variability
generated by a single writer (see Figure 4). To provide some insight as to the
performance of the network in the presence of intrinsic noise, we assumed
that all elements of the cortical network exhibited some level of sponta-
neous activity. Assuming the time steps in our simulations correspond to
approximately 1 ms, we examined performance in the presence of 1 Hz and
10 Hz spontaneous activity. At 1 Hz noise, there was a small drop in the
performance to 87:44 § 0:36%. At 10 Hz, there was a large drop in perfor-
mance to 60:3 § 0:77%. We should stress that it is dif�cult to compare the
effect of noise on simple arti�cial networks with that of biological networks.
Sources of intrinsic noise have various biological sources, including synap-
tic and membrane potential variability. Even when these data are available,
it is dif�cult to apply them to simple models such as that presented here in
which arbitrary discrete time steps are used. Additionally, there is gener-
ally a trade-off between noise levels and the size of the network; thus, the
behavior of small networks is generally more sensitive to noise.

4 Discussion

The results described here show that by using temporal information gener-
ated by local inhibition, it was possible to create a network that classi�ed
handwritten digits in a position-invariant fashion. The temporal codes gen-
erated for each pattern were used to train the recognition network; half the
stimuli were used for training and half for testing. After training, the net-
work generalized appropriately to the test stimuli, comprising both different
digit exemplars and positions. The ability to recognize different handwrit-
ten exemplars indicates that the temporal codes are suf�ciently speci�c to
code for the 10 different digits, yet robust enough to generalize over the
intrinsic variability of the digits. Our stimulus set was from a single writer;
stimulus sets from multiple writers will decrease the performance of the
simple network presented here.

Good performance of the network was obtained despite a simple imple-
mentation; speci�cally, only four feature detectors were used. There are a
few intrinsic limitations of using simple feature detectors with 180-degree
symmetry. For example, the network cannot distinguish between the same
image rotated by 180 degrees, since precisely the same units will be ac-
tivated. Nevertheless, the network correctly classi�ed most instances of 6
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and 9 because of distinct local features intrinsic to the handwritten samples.
(See the upper left panel of Figure 6. More vertical elements are activated
by 9. Additionally, most are activated on time step 3, whereas more ver-
tical elements are activated at time step 4 for the 6.) More sophisticated
implementations of the model could be custom designed for speci�c pat-
tern recognition problems by incorporating more and higher-order sets of
feature detectors.

It is the presence of local interactions in general, rather than the speci�c
characteristics of the connectivity, that underlies the generation of temporal
codes. In other words, the model does not rely on the speci�c assumptions
of cross-orientation inhibition and iso-orientation excitation.

We propose that one of the functions of local interactions in neural cir-
cuits may be to generate temporal codes. Such local circuit interactions
would represent a simple, widespread, and biologically plausible mecha-
nism by which the nervous system could encode information by extending
it into the temporal domain. Indeed, the temporal structure of neurons has
been reported to contain a signi�cant amount of information (McClurkin
et al., 1991; Middlebrooks et al., 1994; Bialek et al., 1991). In the current
model, we have simpli�ed the problem of both generating and analyzing
temporal codes by focusing on the latency of the �rst spike (see also Thorpe
and Gautrais, 1997). We suspect that the same circuitry will generate more
complex temporal codes that are likely to increase the performance of the
network and make it less sensitive to intrinsic noise; however, more enhance
the richness of the temporal code, but would require a more sophisticated
decoding stages would also likely become necessary. Furthermore, analysis
of latency is reasonable since it may be one of the most important tempo-
ral parameters (Richmond, Optican, & Spitzer, 1990; Tovée, Rolls, Treves, &
Bellis, 1993; Gawne, Kjaer, & Richmond, 1996).

Here we have shown that temporal coding may emerge from simple and
well-established network characteristics. Furthermore, we have suggested
that position invariance may be a reason for which it is bene�cial to encode
information in the temporal domain. Our model, which relies on local cir-
cuit interactions, establishes a biologically plausible mechanism to generate
temporal codes that have been proposed to contribute to information pro-
cessing (Hop�eld, 1995). Thorpe and Gautrais (1997) have also proposed
that different spike latencies, in their model generated as a function of con-
trast, couldbe used to generate temporal codes that couldbe used for pattern
recognition.

We should emphasize two potential limitations of the hypothesis pre-
sented here. First, the mechanisms proposed here cannot be solely respon-
sible for position invariance; clearly, position information is not collapsed
across large portions of retinal position in the early stages of visual process-
ing. However, the temporal codes generated by lateral interactions could
to contribute to position invariance, particularly on small scales in a multi-
stage process. Second, other stimulus features, such as contrast, that modu-
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late spike latency could easily confound temporal codes, although temporal
codes generated at higher levels of visual processing ornormalization mech-
anisms could be used to overcome this problem. One of the predictions that
emerges from our hypothesis is that the response latency or temporal struc-
ture of neurons to simple images such as C and T (see Figure 1) should be
different. Since the differences in temporal structure arise from feedforward
and lateral interactions, they are likely to be more robust in higher-order
versus primary visual areas.

In addition to the problem of temporal encoding, a critical issue that re-
mains to be addressed, if the nervous system uses temporal codes, is that of
decoding. We did not address this issue here, and a simple version of delay
lines was used in decoding the temporal patterns. However, delay lines are
unlikely to account for temporal decoding, and temporal processing in gen-
eral, particularly for more complex temporal patterns. Networks that rely
on local circuit dynamics and short-term forms of plasticity may provide a
more biological mechanism to decode temporal information (e.g., Buono-
mano & Merzenich, 1995), but future experimental and theoretical research
must focus on how the brain decodes temporal information, in addition to
temporal encoding of information.
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