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Short-Term Synaptic Plasticity as a
Mechanism for Sensory Timing
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The ability to detect time intervals and temporal patterns is critical to some of
the most fundamental computations the brain performs, including the ability to
communicate and appraise a dynamically changing environment. Many of
these computations take place on the scale of tens to hundreds of milliseconds.
Electrophysiological evidence shows that some neurons respond selectively to
duration, interval, rate, or order. Because the time constants of many time-
varying neural and synaptic properties, including short-term synaptic plasticity
(STP), are also in the range of tens to hundreds of milliseconds, they are strong
candidates to underlie the formation of temporally selective neurons. Neuro-
physiological studies indicate that STP is indeed one of the mechanisms that
contributes to temporal selectivity, and computational models demonstrate
that neurons embedded in local microcircuits exhibit temporal selectivity if their
synapses undergo STP. Converging evidence suggests that some forms of
temporal selectivity emerge from the dynamic changes in the balance of
excitation and inhibition imposed by STP.

Interval Discrimination and Sensory Timing
Animals extract information from a continuous stream of sensory inputs. Much of this informa-
tion is contained in the temporal structure of sensory events, or more generally, in the
spatiotemporal patterns of activity of sensory afferents. Because of the importance of temporal
information, animals have evolved mechanisms to tell time on scales spanning more than ten
orders of magnitude [1], but it is on the scale of tens to hundreds of milliseconds that our ability
to tell time and extract temporal information is at its most sophisticated. Within this range, we
are not only able to identify simple temporal intervals but extract higher-order temporal
patterns. Speech comprehension, for example, requires extraction of a hierarchy of temporal
information: from the voice-onset time of syllables (which contributes to the /ba/ versus /pa/
distinction, for instance), to phrasal boundaries, to prosody [2,3]. Indeed, speech can be
recognized even when spectral information is impoverished but temporal structure is preserved
[4,5]. Humans can recognize speech even when spectral channels are collapsed, meaning that
the temporal envelope provides a significant amount of information for speech recognition [4].

Importantly, even on the subsecond scale, timing is not a unitary problem, but encompasses a
range of inter-related problems necessary for sensorimotor processing, learning, and cognition
[6–8]. Here, we focus on the problem of sensory timing – that is, how neural circuits detect and
discriminate temporal patterns contained in external stimuli – as opposed to the problem of
motor timing, which refers to the ability to actively generate and produce well-timed motor
responses. We propose that sensory temporal selectivity is an intrinsic property of local neural
circuits, which relies on time-varying synaptic and neuronal properties. We further highlight the
role of STP as one of the key mechanisms in the emergence of temporal selectivity.
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Animals have evolved mechanisms to
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poral patterns.
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that selectively respond to temporal
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We propose that temporal selectivity is
an intrinsic property of local neural cir-
cuits that relies on time-varying synap-
tic and neuronal properties; most
notably STP.
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from neural microcircuits that incorpo-
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Temporal Selectivity across Sensory Modalities
Audition is one of the sensory modalities where the relevance of timing information is particularly
prominent. Humans and other animals use acoustic signals for communication for many
behaviors, including courtship, territoriality, and social affiliation [9,10]. Acoustic communica-
tion relies not only on spectral signatures (e.g., pitch) but on temporal features such as interval,
duration, rate, and overall temporal structure. For example, some insects, including cicadas
and grasshoppers, use the temporal pattern of acoustical pulses for conspecific recognition
[11,12]. Female crickets exhibit phonotaxis, a behavior characterized by walking or flying
toward singing males, and phonotaxis is strongest at pulse durations and intervals that are
within the range of the male calling song parameters [13,14].

Interval timing is relevant to other forms of social communication. Weakly electric mormyrid
fish use the intervals between successive electric organ discharges to communicate [15].
They produce individual-specific signals called scallops, which consist of distinct temporal
patterns of 8–12 electric pulses, and these patterns have been linked to different social
behaviors [16]. Similarly, the duration and interval of acoustic pulses are used by some frog
species to differentiate between conspecific and heterospecific calls [12]. Indeed, for mating
calls, changing the interval between a single pair of pulses – in a call that consists of 10 pulses
– significantly decreases the percentage of females showing attraction. In addition to interval
duration, the total number of pulses is also important in this mode of communication: females
prefer calls that contain ten rather than five pulses [17]. Frogs are also able to discriminate
between trills that differ in the shape of the temporal envelope of acoustic pulses [18]. And
finally, echolocation in bats provides one of the best-studied examples of the behavioral
importance of detecting intervals on the scale of milliseconds to tens of milliseconds.
Specifically, they use the interval between emitted acoustic pulses and the echo of these
pulses – the so-called pulse-echo delay – to calculate and determine the position of potential
prey [19].

In addition to the interval, duration, and rate of acoustic elements, the vocalizations of many
birds and mammals rely on more complex temporal features, such as frequency modulated
sweeps, trills, chirps, and the structure of the overall temporal envelope. For example, the
songs of songbirds, much like human speech, are characterized by their complex spectro-
temporal structure, as well as the duration of, and interval between, song syllables [20]. Many
forms of temporal processing rely on experience, highlighting the role of learning in sensory
timing. Rodents, for example, can be trained to make temporal judgments as to whether
intervals are short or long relative to each other [21,22]. Humans are capable of robust temporal
perceptual learning, which is generally reported to be interval specific. For example, repeated
interval discrimination of an auditory interval of 100 ms leads to improved discrimination around
this interval, but not to shorter or longer intervals [23,24].

The above examples establish that animals extract information from the temporal features of
sensory events. Thus, there must be neural mechanisms in place that allow neurons to detect
and represent specific temporal signatures of external stimuli. Indeed, as we will see next,
neurons that respond selectively to features such as interval and duration (i.e., temporally
selective neurons) have been identified in many species.

Interval and Temporal Pattern Selectivity of Neurons
Neurons that are tuned to temporal features such as interval, duration, pulse rate, and temporal
structure of vocalizations have been reported across areas spanning the sensory processing
hierarchy [25–29] (Figure 1). Many of the studies of temporally selective neurons have focused
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Figure 1. Temporal-Selective Neurons Across Species and Modalities. (A) Voltage traces from a neuron in the
midbrain of an electric fish. Each voltage trace represents the delivery of trains of electrical pulses presented at intervals of
100 (left), 50 (middle) and 10 (right) ms. The rows represent three separate repetitions of each train. This neuron was tuned
to pulses delivered at intervals of 50 ms (right). The right panel shows the tuning of the amplitude of the PSPs and number
of spikes. Reproduced from [32]. (B) Duration tuned neuron in cat visual cortex. Off responses to a static bar of different
durations, this neuron responded maximally to a duration of 400 ms. Of 174 neurons, !30% responded differentially to
duration, and 3% showed sharp duration tuning curves. Reproduced from [45]. (C) Auditory responses of a single unit in
lateral portion of the magnocellular nucleus of the anterior neostriatum of an adult zebra finch. Response to the BOS in
forward (left) and reversed (right) order. Below each PSTH are shown the sonogram (frequency vs time plot, with energy in
each frequency band indicated by the darkness of the signal) and the oscillogram (amplitude waveform) of the song
stimulus used. Adapted from [53]. (D) Rastergram of a neuron from rat auditory cortex in response to five different stimuli,
each composed of a 200-ms 3-kHz tone followed by a 50-ms 7-kHz (CF) tone with different stimulus-onset asynchrony.
Numbers represent the facilitation index. Graph (right) shows the average interval-tuning curve. Rats were trained to detect
an intertone onset interval of 300 ms (middle row on left), and this was the spatiotemporal pattern that elicited the maximal
response. Reproduced from [57]. Abbreviations: BOS, bird’s own song; ISI, interstimulus interval; PSPs, postsynaptic
potentials; PSTH, peristimulus time histogram; SOA, stimulus onset asynchrony.

Trends in Neurosciences, October 2018, Vol. 41, No. 10 703



on species that rely on the temporal structure of stimuli for interspecies communication and
vocalizations. For example, the temporal features that contribute to reproductive behavior of
female crickets are mirrored in the response properties of neurons [14]. Neurons in the midbrain
of weakly electric fish have been shown to be selective to the temporal patterns of electrical
pulses [30–32]. For example, some neurons are tuned to pulse rate: spiking with low probability
for pulse rates of 10 or 100 Hz, but spiking with high probability in response to each pulse at a
rate of 20 Hz (Figure 1A). Importantly, in vivo intracellular recordings have shown that these
neurons are also sensitive to the precise temporal structure of scallops that consist of a
distinctive temporal pattern of 8–12 electric pulses. Subthreshold changes in membrane
potential recorded from single neurons discriminate natural scallops from time-reversed,
randomized, and jittered sequences [29].

Some of the most elegant examples of duration-tuned neurons come from studies in the
brainstem of echolocating bats. Specifically, neurons in the inferior colliculus of bats are tuned
to pulse duration [33–35]. Importantly, these duration-tuned neurons have been shown to
match the range of the durations of echolocation signals [34,36,37]. More generally, duration-
tuned neurons have been found in the central auditory systems of frogs [38–40], rodents
[41,42], chinchillas [43], and cats [44]. In addition, duration-sensitive neurons have been
observed across different modalities. For example, neurons recorded from the cat visual
cortex can be tuned to the duration of a stationary bar of light [45] (Figure 1B). The presence
of duration-tuned neurons across species and sensory modalities suggests that duration
selectivity is a general property of sensory systems.

Other examples of how the temporal structure of sensory stimuli shapes neuronal responses
relate to the phenomenon of adaptation. Across sensory modalities, cortical neurons attenuate
their responses to identical stimuli when they are repeated on short timescales [46–48]. For
example, the vast majority of neurons in the auditory cortex exhibit stimulus-specific adaptation
(SSA): neurons selectively reduce their responses to a tone repeated every 300 ms, but
respond robustly to an ‘oddball’ tone presented at a different frequency [49].

An important question pertaining to the temporally tuned neuronal responses mentioned above
is whether they reflect innate hardwired circuits, or rather, emerge in an experience-dependent
manner as a result of learning and plasticity. It seems likely that in some animals temporal
selectivity reflects, at least in part, hardwired circuits. However, in other cases, it is clear that
temporal neuronal selectivity emerges in an experience-dependent fashion (and as mentioned
above, many animals can learn to discriminate intervals and durations). One of the clearest
examples of experience-dependent acquisition of complex stimulus selectivity comes from
songbirds. Like speech learning, song acquisition occurs early in the life of a songbird, and is
critically dependent on auditory experience and feedback [50]. Neurons in multiple areas of
adult male finches are strongly selective for both spectral and temporal properties of birdsong;
they respond more robustly to the bird’s own song (BOS) than to songs of conspecific
individuals, and they respond less well to the BOS if it is played in reverse [20,51–53]
(Figure 1C).

Such experience-dependent emergence of temporally selective neurons has also been
observed in mammals exposed to or trained on stimuli defined by interval, duration, or order
of the underlying tones [54–57]. For example, in one study rats were trained on a go/no-go task
with a target stimulus composed of a 3-kHz tone followed by a 7-kHz tone with an interonset
interval of 300 ms [57]. Recordings in A1 revealed a substantial number of neurons that
responded optimally at this interval, indicating that learning was accompanied by the formation
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of auditory neurons that were tuned to the spectrotemporal features of the target stimuli
(Figure 1D).

Tuning to spatial features is among the most widely studied aspects of sensory systems;
ranging from selectivity to specific orientations of visual lines to selectivity to the frequency of
tones (which we consider spatial because of the tonotopic organization of the cochlea). The
studies discussed earlier suggest that selectivity to temporal features (e.g., duration, interval,
rate, and order of sensory events) is perhaps as prevalent among sensory neurons as spatial
tuning.

Neural Mechanisms of Temporal Selectivity
The breadth of examples across species and modalities suggests that neural selectivity to
temporal features on the order of tens to hundreds of milliseconds reflects a general compu-
tation within sensory circuits. One hypothesis is that temporal tuning is an intrinsic property of
local neural circuits that relies on time-varying synaptic and neuronal properties. Neurons and
synapses possess an abundance of functional properties with time constants on the scale of
tens to hundreds of milliseconds that have been proposed to contribute to sensory timing,
including ionotropic and metabotropic receptors [58], ion channels [28,59,60], and most
notably STP [31,61–65]. Below, we focus on the contribution of STP to sensory timing, but
emphasize that other neural properties have also been implicated; perhaps most notably
dynamic changes in the excitation/inhibition balance and rebound excitation [31,66–68].

STP
STP refers to use-dependent changes in the strength of synaptic connections that take place
on time scales of tens to hundreds of milliseconds [69]. At a synapse exhibiting STP, trains of
presynaptic spikes that occur within a short timespan can cause progressively smaller or larger
postsynaptic potentials (Figure 2). These two opposing forms of STP are referred to as short-
term depression (or paired-pulse depression) and short-term facilitation (or paired-pulse

(A) (B)

2 mV

50 ms

Pyramidal Parvalbumin SomatostaƟn

Figure 2. Diversity of STP at Cortical Synapses. Simulations of synaptic transmission with STP based on real whole
cell recordings. Traces indicate voltage of the postsynaptic cell as the presynaptic cell fires a train of five action potentials at
20 Hz. Diagrams above each trace indicate the identity of pre- and postsynaptic neurons, including pyramidal (green
triangle), parvalbumin-positive inhibitory (red circle), and somatostatin-positive inhibitory (cyan oval) cells. (A) Facilitating
(top) and depressing (bottom) interpyramidal synapses. Based on recordings performed for [79]. (B) Excitatory-to-
inhibitory (top row) and inhibitory-to-excitatory (bottom row) synapses. Based on recordings performed for [77]. Abbrevia-
tion: STP, short-term synaptic plasticity.
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facilitation), respectively. These two broad forms of STP, however, can interact to form more
complex temporal profiles [70]. Short-term depression results primarily from exhaustion of
readily releasable vesicles in the presynaptic terminal. The mechanisms underlying short-term
facilitation, although less precisely understood, involve in part an increase in probability
of vesicle release due to residual presynaptic Ca2+ or the activation of specialized presynaptic
Ca2+ sensors [69,71].

STP is remarkably diverse across neurons [72–75], cortical layers [76], brain regions [77,78],
and can be modulated by development [79–82], sensory experience [82], brain state [83], and
neuromodulation [84]. Despite this richness and diversity, some general principles have
emerged. For example, although STP is generally attributed to presynaptic mechanisms,
the nature of STP of excitatory synapses onto inhibitory interneurons primarily depends on
the postsynaptic inhibitory cell type [70,73]. For example, excitatory postsynaptic potentials
(EPSPs) onto fast-spiking inhibitory parvalbumin-positive (PV) interneurons generally undergo
depression, whereas EPSPs onto low-threshold-spiking, somatostatin-positive (SOM) inhibi-
tory interneurons generally exhibit facilitation (Figure 2B). Furthermore, this differential STP for
excitatory-to-PV and excitatory-to-SOM synapses has been hypothesized to contribute to
stimulus-specific adaptation [49].

Role of STP in Temporal Selectivity
Even though STP is observed across virtually all synapses, there is no consensus as to its
computational function [85,86]. STP has been hypothesized to enable dynamic gain control
[87,88] as well as sensory adaptation and sensitization [69,77,89,90]. More generally, it is
recognized that STP can implement temporal filters [61–63,91,92], that is, STP transforms
temporal patterns of presynaptic spikes into different postsynaptic patterns depending on the
STP characteristics of the activated synapses.

The ability to implement temporal filters at various timescales means that, at least theoretically,
STP has the potential to underlie temporal selectivity in neurons [62]. For example, a simulation
of a simple circuit composed of integrate-and-fire units demonstrates how STP can be used to
generate interval selectivity (Figure 3). In this simulation, an input unit forms facilitating synapses
onto both an excitatory and an inhibitory unit that provides feedforward inhibition onto the
excitatory unit (Figure 3A). As the input unit generates spike pairs separated by intervals of 50,
100, or 200 ms in separate trials, the resulting EPSPs facilitate to different degrees (Figure 3B).
With appropriate tuning of synaptic weights this simple circuit can function as an interval
detector with the excitatory unit playing the role of a readout neuron (Figure 3C). For example,
there is a range of weights of the input ! excitatory unit and input ! inhibitory unit connections
at which the excitatory units fire exclusively to the 100-ms interval (Figure 3D). This selectivity
emerges because, for the 200-ms interval, short-term facilitation at the input ! excitatory unit
synapse has decayed enough such that the EPSP of the excitatory unit is subthreshold, yet, for
the 50-ms interval, short-term facilitation at the input ! inhibitory unit synapse is strong enough
to drive the inhibitory unit to spike, thus vetoing what would be a suprathreshold EPSP in the
excitatory unit.

Over the past decade converging experimental evidence has provided support for hypotheses
suggesting that STP contributes to temporal selectivity. For example, STP appears to underlie
temporal selectivity in the anuran auditory system [93], in which two broad classes of temporally
selective neurons have been identified. One class consists of short-interval cells that respond
best when presented with an optimal number of pulses presented at a fast or intermediate rate
[94]. Short-interval cells respond to consecutive inputs with EPSPs followed by large, slow
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inhibitory postsynaptic potentials (IPSPs). Selectivity appears to result from an enhancement of
EPSPs elicited by repeated pulses – that is, a progressive enhancement in EPSP magnitude
is eventually able to overcome the strong but stable inhibitory response to each pulse.
Importantly, enhancement of excitation is optimal for certain pulse rates [95]. A second class
of temporally selective cells in anuran auditory systems responds well only to slow pulse rates
but fails to respond to fast pulse rates. Electrophysiological experiments suggest that the
low-pass properties of these neurons resulted from cancellation of temporally offset excitatory
and inhibitory synaptic inputs at fast pulse rates, together with short-term synaptic depression
at high stimulation rates [96].

Additional experimental work regarding the mechanistic involvement of STP in pulse
rate selectivity comes from whole-cell recordings of neurons in mormyrid electric fish
[30–32,64]. By estimating synaptic conductances during temporally selective responses,
Baker and colleagues determined that both excitatory and inhibitory conductances exhibited
short-term depression. However, for high-pass neurons (neurons tuned to faster pulse rates),
inhibitory conductances depressed more strongly than excitatory conductances, while for
most low-pass neurons excitation depressed more strongly and more quickly [31]. In addition
to differences in STP, high and low-pass neurons exhibited differences in the amplitude and
duration of excitatory and inhibitory conductances. Analytically reconstructing cellular
responses while excluding short-term depression led to drastically reduced diversity in interval
tuning [31].
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Network Models of Temporal Pattern Selectivity Based on STP
The theoretical and experimental evidence discussed above indicate that STP plays a role in
temporal filtering and the formation of temporally selective neurons. Indeed, as shown in
Figure 3, it is straightforward to create interval-selective neurons in disynaptic circuits that
exhibit short-term facilitation. However, in this example, interval selectivity relies on the careful
tuning of synaptic weights and STP. Far more general models of cortical computation, referred
to as state-dependent network models or liquid state machines [61,62,97,98], propose that
STP provides a rich mechanism to endow cortical networks with the ability to decode the
spatiotemporal structure of stimuli. Specifically, STP functions as a memory of what happened
within the past few hundred milliseconds. Consider the case of two identical tones arriving in the
auditory cortex 100 ms apart during an interval-discrimination task. Even if we assume the
second tone activates the same pattern of thalamocortical inputs into the cortex as the first
tone, it will arrive in a different cortical state, where some synapses will be depressed and others
facilitated. Thus, the same tone should have a different net effect on the circuit, depending on
the recent input history. While some neurons will be activated by both events, others are likely to
be activated by one or the other, and these neurons can provide information about the length of
the interval or the order of events.

In these models, STP (and other time-varying properties) provides a memory buffer that
ensures that each event is encoded in the context of the previous events. Thus, if two tones
A and B are presented 100 ms apart, the response to B does not simply encode the stimulus B,
but B preceded by A. This view predicts that it should be possible to decode previous stimuli
based on the population response to the current stimulus. This prediction has been confirmed,
by showing that in the visual cortex, when a pair of images is sequentially presented it is
possible to determine the first image based on the response to the second [99]. Another
prediction is that interval discrimination should be impaired by preceding stimuli, and indeed
psychophysical experiments show that simply presenting two intervals to be judged close
together in time impairs interval discrimination [100,101]. While these results are consistent with
the role of STP in establishing the state-dependence of the local network (the memory buffer), it
remains to be determined whether STP is indeed one of the mechanisms underlying these
results. Some support for this possibility comes from computer simulations, which have
established that randomly connected recurrent neural networks endowed with STP are
intrinsically capable of discriminating simple intervals [61,62,97,100,102]. Furthermore, the
presence of STP in such networks enhances their ability to discriminate complex temporal
patterns such as speech [62,103,104].

Concluding Remarks and Future Perspectives
Sensory neurons can be selective to temporal features such as interval, duration, and overall
spatiotemporal structure. However, in contrast to the neural mechanisms underlying spatial
selectivity, relatively little is known about how neurons in the sensory hierarchy respond selectively
to the temporal features of stimuli. The experimental and theoretical data reviewed here supports
the notion that sensory timing relies on the intrinsic dynamics of time-varying synaptic and neural
properties. Among these properties, we propose that STP plays a fundamental role in implement-
ing temporal filters and the generation of temporally selective neurons. While some experimental
evidence provides direct support for this hypothesis, a causal relationship between STP and
sensory timing remains to be established. This, however, is a challenging endeavor because STP
is a universal property of synapses and difficult to manipulate without altering baseline synaptic
transmission. Nevertheless, STP can be altered through pharmacological means. Recent studies
have shown that synaptotagmin 7 knockout animals do not exhibit short-term facilitation [71],
opening up the possibility of using genetic manipulations when examining the relationship

Outstanding Questions
Do ‘hardwired’ temporally selective
neurons rely on the same neural mech-
anisms as those that emerge in an
experience-dependent manner?

How does diversity of short-term plas-
ticity relate to diversity in coding of
temporal features?

How is short-term plasticity regulated
by development and sensory
experience?

Is short-term plasticity causally related
to neuronal temporal selectivity?
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between STP and temporalselectivity. This will lead to novel and exciting lines of researchaimed at
elucidating the neural mechanisms underlying sensory timing. Future studies will rely in part on
establishing a causal relationship between time-varying neural properties such as STP and simple
sensory timing tasks (see Outstanding Questions).
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