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Complex neural dynamics produced by the recurrent architecture of neocortical circuits is critical to the cortex’s computational power.
However, the synaptic learning rules underlying the creation of stable propagation and reproducible neural trajectories within recurrent
networks are not understood. Here, we examined synaptic learning rules with the goal of creating recurrent networks in which evoked
activity would: (1) propagate throughout the entire network in response to a brief stimulus while avoiding runaway excitation; (2) exhibit
spatially and temporally sparse dynamics; and (3) incorporate multiple neural trajectories, i.e., different input patterns should elicit
distinct trajectories. We established that an unsupervised learning rule, termed presynaptic-dependent scaling (PSD), can achieve the
proposed network dynamics. To quantify the structure of the trained networks, we developed a recurrence index, which revealed that
presynaptic-dependent scaling generated a functionally feedforward network when training with a single stimulus. However, training the
network with multiple input patterns established that: (1) multiple non-overlapping stable trajectories can be embedded in the network;
and (2) the structure of the network became progressively more complex (recurrent) as the number of training patterns increased. In
addition, we determined that PSD and spike-timing-dependent plasticity operating in parallel improved the ability of the network to
incorporate multiple and less variable trajectories, but also shortened the duration of the neural trajectory. Together, these results
establish one of the first learning rules that can embed multiple trajectories, each of which recruits all neurons, within recurrent neural
networks in a self-organizing manner.

Introduction
Complex neural dynamics produced by the recurrent architec-
ture of neocortical circuits is critical to the cortex’s computa-
tional properties (Ringach et al., 1997; Sanchez-Vives and
McCormick, 2000; Wang, 2001; Vogels et al., 2005). Rich dynam-
ical behaviors, in the form of spatiotemporal patterns of neuronal
spikes are observed in vitro (Beggs and Plenz, 2003; Shu et al.,
2003; Johnson and Buonomano, 2007) and in vivo (Wessberg et
al., 2000; Churchland et al., 2007; Pastalkova et al., 2008), and
have been shown to code information about sensory inputs
(Laurent, 2002; Broome et al., 2006), motor behaviors (Wessberg
et al., 2000; Hahnloser et al., 2002), as well as memory and plan-
ning (Euston et al., 2007; Pastalkova et al., 2008). Although it is
clear that the neural dynamics that emerges as a result of the
recurrent architecture of cortical networks is fundamental to
brain function, relatively little is known about how recurrent
networks are set up in a manner that support computations, yet
avoid pathological states, including runaway excitation and epi-
leptic activity. Particularly, what are the synaptic learning rules
that guide recurrent networks to develop stable and functional
dynamics? Traditional learning rules, including Hebbian plastic-
ity, spike-timing-dependent plasticity (STDP), and synaptic scal-
ing, have been primarily studied in the context of feedforward

networks, or at least in networks that do not exhibit significant
temporal dynamics.

It is well established that randomly connected recurrent neu-
ral network models can exhibit chaotic regimes (van Vreeswijk
and Sompolinsky, 1996; Brunel, 2000; Banerjee et al., 2008) when
driven by continuous Poisson inputs. In response to simple ex-
ternal inputs, such as a brief activation of a subset of the neurons
in the network, randomly connected neural networks generally
lead to unphysiological behavior, including runaway excitation,
or what has been termed a “synfire explosion” (Mehring et al.,
2003; Vogels et al., 2005). One difference between many of the
simulations and biological networks relates precisely, to the ran-
dom connectivity. Structural analyses (Song et al., 2005; Cheetham
et al., 2007) and the universal presence of synaptic learning rules
(Abbott and Nelson, 2000; Dan and Poo, 2004) indicate that
network connectivity is not random, but rather sculpted by
experience. A few studies have incorporated STDP into ini-
tially random recurrent networks and analyzed the dynamics
driven by spontaneous background activity (Izhikevich et al.,
2004; Izhikevich and Edelman, 2008; Lubenov and Siapas, 2008).
And, Izhikevich (2006) has shown that STDP coupled with long
synaptic delays can be used to generate reproducible spatiotem-
poral patterns of activity within recurrent networks.

Experimental studies using organotypic cortical slices have
shown that during the first week of in vitro development, a brief
stimulus does not lead to any propagation, but at later stages
stimulation elicits spatiotemporal patterns of activity lasting up
to a few hundred milliseconds (Buonomano, 2003; Johnson and
Buonomano, 2007). Here, we sought to examine the learning
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rules that could lead to this type of evoked propagation. STDP is
not effective, in part because it requires the presence of spikes to
be engaged, and in part because it inherently shortens the prop-
agation time of neural trajectories. Previous studies showed that a
form of homeostatic plasticity, synaptic scaling, generates stable
evoked patterns in feedforward networks (van Rossum et al.,
2000), but is unstable in recurrent networks (Buonomano, 2005;
Houweling et al., 2005). A modified form of synaptic scaling
termed presynaptic-dependent scaling (PSD), however, was
shown to guide initially randomly connected neural networks to
develop stable dynamic states in response to a single input stim-
ulus (Buonomano, 2005). Here, we establish that PSD can em-
bed more than one neural trajectory in a network, and that as
the number of embedded trajectories increases so does net-
work recurrency. This is one of the first learning rules that
accounts for the generation of multiple patterns— each of
which engages all neurons—in recurrent networks in a self-
organizing manner.

Materials and Methods
All simulations were performed using NEURON (Hines and Carnevale, 1997).

Neuron dynamics. Excitatory (Ex) and inhibitory (Inh) neurons were sim-
ulated as single compartment integrate-and-fire neurons. As described pre-
viously, each unit contained a leak (EL� �60 mV), afterhyperpolarization
(EAHP� �90 mV), and noise current. Ex (Inh) units had a membrane time
constant of 30 (10) ms. Spike thresholds were set from a normal distribution
(�2 � 5%), with means of �40 and �45 mV, for Ex and Inh units, respec-
tively. When threshold was reached, V was set to 40 mV for the duration of
the spike (1 ms). At offset, V was set to �60 and �65 mV for the Ex and
Inh units, respectively, and a afterhyperpolarization conductance ( gAHP)
was activated and decayed with a time constant 10 (2) ms for the Ex (Inh)
units. Whenever a spike occurred, there was a stepwise increment of gAHP �
0.07(0.02) mS/cm2 for the Ex (Inh) units at spike offset.

Synaptic currents. Two excitatory (AMPA and NMDA) and one inhib-
itory (GABAa) current were simulated using a kinetic model (Destexhe et
al., 1994; Buonomano, 2000; Lema et al., 2000). Synaptic delays were set
to 1.4 ms for excitatory synapses and 0.6 ms for inhibitory synapses. The
ratio of NMDA to AMPA weights was fixed at gNMDA � 0.6 gAMPA for all
excitatory synapses. Short-term synaptic plasticity was incorporated in
all synapses as modeled previously (Markram et al., 1998; Izhikevich et
al., 2003). Specifically, the Ex3Ex synapses exhibited depression, U �
0.5, �rec � 500 ms, �fac � 10 ms; Ex3 Inh synapses exhibited facilitation,
U � 0.2, �rec � 125 ms,�fac � 500 ms; and Inh3Ex synapses exhibited
depression (Gupta et al., 2000), U � 0.25, �rec � 700 ms, �fac � 20 ms. It
should be noted that while short-term plasticity was incorporated, its
presence was not critical to the results described here.

Presynaptic-dependent synaptic scaling. We used a modified homeo-
static synaptic scaling rule, termed presynaptic-dependent scaling
(Buonomano, 2005) as follows:

W ij
��1 � Wij

� � �WAj
� � �Agoal � Ai

�� � Wij
�. (1)

Where Wij
� represents the synaptic weight from neuron j to i at trial �. �W

is the learning rate (0.01), and Agoal is the target activity (mean number of
spikes per trial); set to 1 for Ex cells and 2 for Inh cells. Ai

� is the average
activity of neuron i at trial �, given by the following:

Ai
��1 � Ai

� � �A�Si
� � Ai

��, (2)

in which �A � 0.05 defined across-trial integration of activity. Therefore,
learning dynamics and neural dynamics were coupled via S �, the number
of spikes in the �th trial for each cell. In the present study the duration of
a trial was 250 ms, and in between trials all state variables were considered
to have decayed back to their initial values. This scheme for trial-based
learning dynamics was used since the time scale of homeostatic plasticity
and neural activation is not agreed upon (Buonomano, 2005; Fröhlich et
al., 2008).

Spike-timing-dependent plasticity. STDP was implemented in a multi-
plicative form (van Rossum et al., 2000):

F��t� � � cp � exp���t/�p�, �t � 0
cd � �exp��t/�d�, �t � 0

. (3)

Where �t � tpost�tpre. The above function was used for Ex3Ex synapse
pairs. Here, we used the following: �p � 20 ms, �d � 40 ms, cp � cd �
0.0001. Synaptic weights modified by STDP were updated as follows:

W ij
��1 � Wij

� � Wij
� � �

i�1

I �
j�1

J

F�ti � tj�, (4)

where J was the number of spikes for neuron j and I the number of spikes
for neuron i in the �th trial, and tj and ti the respective spikes times.

Output layer. The output layer consisted of five IAF neurons that re-
ceived inputs from all Ex neurons of the network. Each output unit was
trained to fire at one of the randomly assigned target times: 20, 40, 60, 80,
and 100 ms. Each output unit was randomly assigned one of the target
times, resulting in different random sequences of five elements. Synaptic
weights were adjusted using a simple supervised learning rule: if a pre-
synaptic neuron fired at the target time (actually a time window equal to
the target time 	 10%) its synapse onto the corresponding target output
unit was potentiated (assuming the output neuron did not fire). If the
output neuron fired outside the target window and the presynaptic neu-
ron fired, that synapse was depressed. Training of the output units con-
sisted of the presentation of 170 trials, and 30 trials were used to test the
performance. A performance value of p � 1 means that each motor
neuron fired at its correct target time window for all 30 test trials.

Neural trajectories in state space. To visualize the different neural tra-
jectories in neuron state space, we used principal component analysis to
reduce the dimensionality of the network state. This analysis relied on the
average activity (the PSTH of each Ex unit; see Fig. 6) over 200 trials after
training. The data were normalized and the principal components were
calculated using the PROCESSPCA function in MATLAB 2007a.

Network structure analysis. To analyze the network structure, two mea-
sures were used: efficiency (E) and the recurrence index (RI). Efficiency
was defined as follows:

E �
1

N�N � 1� �
i, j�N,i
j

1

di, j

, (5)

where N was the number of Ex cells and dij was the shortest path from
neuron i to neuron j. In a binary graph, in which all weights were equal,
the distance corresponds to minimal path length. In a weighted graph the
distance between nodes 1 and 3 through path 13233 corresponds to
the following:

1

W12
�

1

W23

. (6)

Thus, a longer path with stronger weights can be more efficient than a
shorter path with weaker weights (Boccaletti et al., 2006). The following
is an instance:

d13 � min� 1

W13
,

1

W12
�

1

W23
�. (7)

Dijkstra’s algorithm was used to calculate the shortest path for a graph, and
the Brain Connectivity Toolbox was used to calculate efficiency (http://www.
indiana.edu/�cortex). The recurrence index (RI) is conceptually related to
E, but takes the perspective of each synapse, specifically as follows:

RI �
1

N�N � 1� �
i	Nsyn

1

dpost, pre
i

, (8)

where Nsyn was the number of synapses within the network, dpost, pre
i was the

shortest length from the postsynaptic neuron of synapse i back to its presyn-
aptic neuron. Here, the shortest path in RI was defined as the binary path.

Input stimulus patterns. The stimuli consisted of 24 and 12 randomly
selected Ex and Inh neurons, respectively, that fired at 0	1 ms (mean	SD)
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following a Gaussian distribution, thus only a small subset of neurons fired at
the beginning of each trial. Qualitatively similar results were obtained when
the SD of the Gaussian time window was increased. We used a small SD to
simulate a brief highly synchronous input to the network (Mehring et al., 2003).

Model parameters and initial conditions. Unless stated otherwise, all
simulations were performed using a network with 400 Ex units and 100
Inh units connected with a probability 0.12 for Ex3Ex, and 0.2 for both
Ex3 Inh and Inh3Ex, which results in each postsynaptic Ex unit receiv-
ing 48 inputs from other Ex units, and 20 inputs from Inh units; each
postsynaptic Inh unit received 80 inputs from Ex units. Initial synaptic
weights were chosen from a normal distribution with the mean as WEE �
2/48 nS, WEI � 1/80 nS and WIE � 2/20 nS, respectively. The SD of the
distributions were �EE � 2WEE, �EI � 8WEI and �IE � 2WIE. If the initial
weights were nonpositive, they were reset to a uniform distribution from
0 to twice the mean. To avoid the induction of unphysiological states in
which a single presynaptic neuron fired a postsynaptic neuron, the max-
imal Ex3Ex AMPA synaptic weights were WEE

max � 1.5 nS except as
stated in Figure 6. The maximal Ex3 Inh AMPA synaptic weights were
set as WEI

max � 0.4 nS. All inhibitory synaptic weights were fixed. All
simulations were done with a time step �t � 0.1 ms.

Results
We used an artificial neural network composed of 400 Ex and 100
Inh integrate-and-fire units. As described in Materials and Meth-
ods, the connection probability between Ex neurons was 12%,
and each unit contained an independent noise current. The net-
work was driven by a brief stimulus at t � 0 that consisted of a
single spike in 24 Ex and 12 Inh units. As observed during early
development (Muller et al., 1993; Echevarría and Albus, 2000),
the initial weights of the recurrent network were weak and thus
not capable of supporting any network activity—that is, the input
stimulus did not elicit any propagation (Fig. 1A, left). Training

consisted of hundreds of presentations of the input stimulus in
the presence of the PSD learning rule (Eq. 1). Like synaptic scal-
ing, PSD will increase the weights onto a postsynaptic neuron
that has a low level of average activity across trials (see Materials
and Methods). In contrast to synaptic scaling however, PSD will
preferentially potentiate synapses from presynaptic neurons that
have a higher average activity rate across the preceding trials. As
shown in Figure 1A (middle panel), over the course of training
PSD guides the network to a stable state, where each neuron’s
activity within one trial reached the target level of one spike per
trial. Thus, as a result of training, a stable neural trajectory lasting
�120 ms emerged (Fig. 1A, right). Throughout this paper we will
use the term neural trajectory to refer to the spatiotemporal pat-
tern of activity observed in the network. Specifically, the trajec-
tory is defined by the path network activity takes through
N-dimensional state space (where N equals the total number of
cells). Note that in general, every neuron in the network partici-
pates in each trajectory.

To determine the importance of the precise structure of the
weight matrix between the Ex neurons, compared with the con-
tribution of the mean weights and their statistical distribution, we
shuffled the synaptic weight matrix and examined the network
response to the same input. As expected, shuffled weights pro-
duced no network activity (Fig. 1C, left). We next progressively
scaled the shuffled Ex3Ex matrix. A scale factor of 2 resulted in
suprathreshold activity in a few neurons (Fig. 1C, middle), a fac-
tor of 3 produced runaway excitation (Fig. 1C, right). The average
number of spikes per neuron as a function of the scaling of the
weight matrix is shown in Figure 1B; a sharp transition occurs
between low activity and “explosive” regimes, suggestive of a

Figure 1. PSD creates stable propagation of activity. A, Left, In the initial state a brief stimulus does not produce network activity because of the weak synaptic weights. Middle, The mean activity
of the network over all Ex neurons converges to the target level (one spike/trial) after training with PSD over hundreds of trials. Right, The pattern of activity (the neural trajectory) to which the
network converged to during training (Ex and Inh units fired once and twice per trial, respectively). Units were sorted by their latency. B, Mean activity as a function of synaptic strength of trained
matrix (unshuffled, red), and shuffled weight matrices (black). The x-axis reflects the gain factor by which the weight matrices were multiplied. The shuffled case shows a sharp transition, whereas
the trained case shows a linear increase in activity. Each red line is a simulation with a different random seed, and each black line results from shuffling the matrix of one of the red line simulations.
There are three overlapping red lines. The dashed line is the target activity, A � 1. C, Three examples of the raster plots of a shuffled matrix: left, multiplication factor � 1; middle, �2; right; �3.
Only the weights of Ex3 Ex synapses are shuffled. Raster plots are sorted by the latency of the spike time (the first spike for Inh neurons).
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phase transition where the scaling factor represents an order pa-
rameter. In contrast, when the weights of the nonshuffled matrix
were scaled, activity increased in a fairly linear manner (Fig. 1B).
These results indicate that the learning generated dynamics was
specific to the structure of the network, and not a result of the
statistical properties of the weight matrix, such as the mean syn-
aptic weights.

Training with two stimuli produces two distinct
neural trajectories
Biological recurrent neural networks can generate multiple distinct
neural trajectories in response to different stimulus patterns (Stopfer
et al., 2003; Broome et al., 2006; Durstewitz and Deco, 2008; Buono-
mano and Maass, 2009). Thus we next examined whether PSD could
embed more than one neural trajectory by training it with two input
patterns.

Each of the two input patterns were composed of a subset of
randomly selected Ex and Inh units, which as above fired as a
brief “pulse.” Every “block” consisted of a sequence of two trials,
and within a block this sequence of stimuli was presented in each
trial, but in random order. As shown in Figure 2A, training re-

sulted in the emergence of two distinct
neural trajectories within the network (see
Movie in supplemental material, available
at www.jneurosci.org). Specifically, each
of the two input patterns elicited a distinct
spatiotemporal pattern of activity—a be-
havior that requires the presence of func-
tional recurrent connections. The fact
that both trajectories were distinct can be
visualized by sorting the units according
the spike latency generated by one or both
of the patterns (Fig. 2A, middle and right
panels). The initial and final weight matri-
ces are shown in Figure 2B. When sorted
by spike latency one can see that the upper
triangle blocks of Ex3Ex and Ex3 Inh
have stronger weights than the lower tri-
angles; reflecting a functional feedforward
structure within the recurrent network.
However, one can also see the presence of
significant recurrent structure (recurrence
is quantified below). The two distinct neural
trajectories can also be visualized using
principle component analysis to reduce the
high dimension state space into three-
dimensional (3D) space (Fig. 2C); both tra-
jectories start from the same location at t �
0, but traveled through different regions of
state space before returning to the initial rest
state �120 ms later.

The trajectories observed above al-
low neural networks to generate com-
plex spatiotemporal output patterns in
response to different stimuli. To quantify
this ability we can think of the recurrent
circuit as a premotor network and add a
small number of output neurons, each of
which receives input from all the Ex units
in the recurrent network. We asked
whether it is possible to use distinct neural
trajectories to generate different spatio-
temporal output motor patterns. To an-

swer this question, we used a supervised learning rule to train the
output units to fire in a specific temporal sequence (see Materials
and Methods)—note that we are using a supervised learning rule
to train the output units as a method to study the behavior of the
recurrent network, not necessarily because it reflects biologically
plausible mechanisms, or a plausible mechanism to decode tem-
poral information (Buonomano and Merzenich, 1999). The out-
put layer was composed of five integrate-and-fire units. As shown
in Figure 3, input pattern A generated an output A
(O13O23O33O43O5),whileinputBgeneratedtheoutputpattern
B: O53O43O33O23O1 (one could think of these patterns as
five fingers playing a specific sequence of notes on a keyboard).
The transformation of the neural trajectories into a simpler out-
put pattern facilitates the quantification of the robustness of the
neural trajectories, and provides a measure of how well these
trajectories could be used by downstream neurons for motor
control. We defined a performance measure (P) as the percent-
age of spikes of all five output neurons that occurred at the target
time window (	10%), such that p � 1 corresponds to the opti-
mal performance (see Materials and Methods). Thus, P can be
used to quantify both the reproducibility of the neural trajecto-

Figure 2. Two distinct neural trajectories are produced by training the network with two stimuli. A, Raster plots of unsorted
(left), sorted by input A (middle) and by both inputs separately (right) after training with two different input patterns (cyan: input
A; yellow: input B) presented at t � 0. B, The corresponding weight matrix before and after training. Initial weights are weak (left);
weights after training (middle); weight matrix sorted using neural indexes from the middle of A (right) for both presynaptic and
postsynaptic neurons. The weights in the upper triangle blocks of the Ex3 Ex and Ex3 Inh connections are stronger than those
in the lower triangle blocks. The red line divides the matrix into three matrices: Ex3 Ex, Ex3 Inh, Inh3 Ex. The green lines
establish a visual reference of the diagonal of the matrices. The color bar shows the range of weights from zero to their maximum.
The submatrices are normalized by the maximum weight of each type of synapse: AMPA for Ex3 Ex and Ex3 Inh, GABAa for
Inh3 Ex connections. Only excitatory synapses are plastic, GABAa synapses are fixed. The Inh3 Inh block is empty since there are
no Inh3 Inh synapses. C, Two neural trajectories (solid line: input A; dashed line: input B) averaging 200 trials are visualized in the
PCA-reduced 3D network state space. Both trajectories start at the same initial point and rapidly diverge, until returning to the initial state.
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ries in the recurrent network, as well as
how this information could be used to
generate precise motor output patterns.

STDP improves the embedding of
multiple trajectories
We next examined and quantified the
ability of the network to learn 1–5 differ-
ent patterns. Figure 4 (open bars) shows
the mean performance of the network af-
ter training with PSD across different
numbers of input stimuli—above 4 pat-
terns performance falls close to 0.5. Much
of this decrease was a result of increasing
jitter and the high variability across trials,
particularly of the spikes late in the se-
quence. Thus, it seemed that a learning
rule which further strengthened the syn-
apses between neurons that were being se-
quentially activated would be beneficial in
decreasing this variability, and improving
performance. To test this hypothesis we
incorporated both PSD and STDP into
the network (Abbott and Nelson, 2000;
Karmarkar et al., 2002; Dan and Poo,
2004). PSD�STDP resulted in a signifi-
cant improvement in performance,
particular in the five-stimulus case, re-
flecting less variable neural trajectories
across trials. There was however a tradeoff; as expected, STDP
tended to shorten the time span over which the trajectory un-
folds, because strengthening the sequentially activated synapses
decreases spike latency. This was the cause of the decreased per-
formance when the network was trained on only one stimulus
(note the first gray bar in Fig. 4). Specifically, there was a well
embedded trajectory, however it was over in �50 ms, and thus
output spikes cannot be generated at the 60, 80 and 100 ms time
points. Interestingly, in the PSD�STDP condition, performance
was dramatically better when the network was trained with two
inputs compared with one. We also included stimulations with
conventional synaptic scaling (SS) (van Rossum et al., 2000) and
STDP, which resulted in poor performance independent of the
number of stimuli. Note that we did not examine the performance of
STDP alone in the current study, because, guided by our develop-
mental experimental data (Johnson and Buonomano, 2007) the ini-
tial synaptic weights were very weak and incapable of eliciting
spiking activity, and since STDP requires spikes, analyses of STDP
alone would require an additional set of assumptions.

Parameter robustness and sensitivity to random spikes
The above results show that PSD can embed multiple neural
trajectories in recurrent networks. However, an important ques-
tion is how dependent are these results on the parameters used in
the simulations, and how robust is performance in response to
increased levels of noise. We examined these issues by (1) para-
metrically varying the connection probability PEE and the maxi-
mal excitatory synaptic weight of the Ex3Ex connections (WEE

max);
and (2) adding background Poisson activity.

Physiologically, the strength of excitatory synapses exhibits an
upper bound. Generally the strength of a single connection be-
tween any two Ex neurons is well below threshold, and thus many
presynaptic neurons must cooperate to fire a postsynaptic cell
(Markram et al., 1997; Koester and Johnston, 2005). In the above

simulations the maximal Ex3Ex weight was WEE
max � 1.5 nS, a

value that required at least 2 synchronous excitatory inputs in the
absence of any inhibition to fire a postsynaptic cell. Figure 5
shows the network performance after training with two stimuli
and the PSD learning rule while both WEE

max and PEE were varied.
The overall performance was larger than 80% for all parameters.
Performance was slightly lower when WEE

max � 0.8 nS and PEE was
small. Performance was fairly robust to the variations of PEE,
particularly given that the conservative experimental estimate of
connectivity between pyramidal neurons is 10% (Mason et al.,
1991; Holmgren et al., 2003; Song et al., 2005).

All of the above simulations included a current that injected
independent noise into each unit. While this current induced
fluctuations in the membrane voltage and was responsible for the
jitter seen across trials it did not elicit spikes by itself. Thus we
next examined performance in the presence of additional ran-
dom spiking activity. We added background Poisson activity dur-
ing the training and testing of the network. Figure 6 shows a
typical neurogram after training the network with one stimulus
(Fig. 6A,C) or two stimuli (Fig. 6B,D) in presence of 0 (“con-
trol”) or 1 Hz Poisson noise. With PSD alone, training without
random spikes (Fig. 6, rate � 0) resulted in a small degree of jitter
of the neural trajectories; the introduction 1 Hz noise, however,
induced a significant increase in jitter as evidenced by the width
of the diagonal band. Since STDP further enhanced the synaptic
strength of sequentially activated neurons, the PSD�STDP con-
dition was less sensitive to the presence of 1 Hz background ac-
tivity. These results suggest that STDP may play an important
role in creating robust noise-insensitive neural trajectories, even
though it may not initially underlie their actual formation.

Network structure analysis
Training with different numbers of stimuli resulted in qualita-
tively different behavior, specifically, multiple embedded trajec-
tories. Thus, we next asked: what is the structural difference

Figure 3. Different trajectories can drive multiple spatiotemporal patterns in output neurons. A, Trajectory A drives output
neurons to generate output pattern A’. Raster plots of two trajectories (cyan: input A; yellow: input B) sorted by the trajectory A
(left); output pattern A in which five output neurons fire at different times (middle); voltage traces of the output neurons show that
they fire at their target time during the test trials (right). B, Similar to A, trajectory B drives the same five output neurons to
generate a different spatiotemporal output pattern B’. Raster plots of same two trajectories sorted by trajectory B (left); the
reversed temporal patterns from that in A was used as the target (middle and right).
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between networks trained with different numbers of stimuli? Vi-
sual inspection of the weight matrices trained with one stimulus
reveal that they function primarily in a feedforward mode—i.e.,
an initially recurrent network with weak random weights, be-
came a functionally feedforward network after training. How-
ever, when multiple trajectories were present, it was clear that
some degree of recurrence is necessary, because each neuron par-
ticipated in more than one trajectory. To analyze and quantify the
structure of the trained networks we used two measures to char-
acterize the weight matrix: E and RI. Both measures were based
on the mathematical description of neural networks as a directed
graph (see Materials and Methods). Efficiency is a generalization
of the standard measure of the shortest path of the graph, which
takes into account the connection weight to describe the average
shortest length between any two nodes of a network (Boccaletti et
al., 2006). While this is a useful measure it does not directly
capture what many neuroscientists mean when they refer to re-
currence, which relates to the ability of a neuron to “loop back”
upon itself. For example, the efficiency in a feedforward network

can be larger than that in a network with some degree of recurrence
(even if the number of synapses is the same, Fig. 7E vs D). Thus, we
introduced the RI measure, which was based on the shortest directed
path it took an individual synapse to return to itself. As illustrated
using simple networks in Figure 7A, both efficiency and RI are 1 in a
fully connected network, however, in contrast to efficiency, RI will
always be zero in a feedforward architecture (Fig. 7E,F).

We first analyzed the mean efficiency and RI in networks
trained with 1–5 inputs. Both the efficiency and RI increased with
the number of training patterns (Fig. 8A), and as expected the RI
was close to 0 when the network was trained with a single pattern,
consistent with the notion that this network was essentially a feed-
forward one. This implies that the network structure becomes more
complex when multiple stimuli are presented. Specifically, when the
same network was trained with different number of stimuli, it be-
came structurally more complex—even though the “skeleton” of
the synaptic connections remained the same—because the initial
connectivity patterns were the same for a given simulation random
number generator seed.

Even for a given number of training stimuli performance of a
network varied significantly depending on the random “seed”
chosen to build the network, that is, on the relationship between
which units were physically connected and the chosen input pat-
terns. For example, for a PSD�STDP simulation using 5 stimuli,
performance could range from �0.5 to 0.9 (Fig. 8C, y-axis). Cor-
relation coefficients (CC) between the performance and the
structural indices, calculated using 10 replications with different
random number generator seeds, established that there was an
inverse relationship. When the stimulus number was three or
more, this relationship was significant (Fig. 8B). Thus, while the
higher degree of recurrence was observed when multiple trajec-
tories were embedded, each trajectory was less robust with higher
degrees of recurrence.

Discussion
Our results demonstrate how simple synaptic learning rules can
lead to the embedding of multiple neural trajectories in a recur-
rent network in a self-organizing manner. Analysis of the struc-
ture of the network revealed that, depending on the number of
stimuli used during training, qualitatively different configura-
tions emerged. Recurrence increased as a function of the number
of input stimuli used for training. However, for a given number of
input patterns, the networks ability to reliably generate multiple
trajectories was inversely related to the degree of recurrence.

Neural dynamics in recurrent networks
It is widely accepted that the recurrent architecture of neural
networks is of fundamental importance to the brain’s ability to
perform complex computations. First, the generation of complex
spatiotemporal patterns of action potentials that underlie motor
behavior is assumed to rely on the recurrent nature of motor and
premotor cortical circuits (Wessberg et al., 2000; Hahnloser et al.,
2002; Churchland et al., 2007; Long and Fee, 2008). Second, it has
been proposed that many forms of sensory processing rely on the
interaction between incoming stimuli and the internal state of
recurrent networks (Mauk and Buonomano, 2004; Durstewitz
and Deco, 2008; Rabinovich et al., 2008; Buonomano and Maass,
2009). However, relatively little progress has been made toward
understanding how cortical circuits generate and control neural
dynamics. Most studies of neural dynamics within recurrent net-
works have focused on the dynamic behavior of networks in
which the weights are randomly assigned (in the absence of syn-
aptic learning rules), and activity is driven by spontaneous back-

Figure 4. Performance with and without STDP when training with different number of
stimuli. When training with more than one stimulus, performance in networks trained with PSD
or PSD�STDP decreased with increasing stimulus number. Additionally, for �4 stimuli per-
formance was higher in networks trained with PSD�STDP. We also examined performance
using traditional SS and STDP. Error bars represent the SEM, and were calculated from 10
simulations with different random seeds. A two-way ANOVA over the multiple stimuli condi-
tions (2–5) reveled a significant interaction between number of stimuli and the presence or
absence of STDP (F(3,72) � 5.3, p � 0.002).

Figure 5. Performance in response to different parameter values. With WEE
max values of 1,

1.5, and 2nS, performance was robust over different connection probabilities (PEE). Error bars
represent the SEM calculated from 10 simulations with different random seeds. Data were
obtained with training with two stimuli and PSD.
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ground activity as opposed to transiently
evoked external inputs representing sen-
sory stimuli (van Vreeswijk and Sompo-
linsky, 1996; Brunel, 2000; Mehring et al.,
2003). Depending on the strength of re-
current connections and the relative bal-
ance between excitation and inhibition,
these networks typically exhibit a number
of regimes including complex irregular
and asynchronous activity, which resem-
bles in vivo patterns of spontaneous activ-
ity (Brunel, 2000). It has been proposed
that regimes near where these networks
exhibit phase transitions similar to that
shown in Figure 1B (Haldeman and
Beggs, 2005) are optimal for storage ca-
pacity and dynamics, however, how such
regimes would be achieved has not been
clear. Mehring and colleagues have shown
that recurrent networks tend to exhibit the “explosive” type of
behavior shown in Figure 1C, when they were stimulated with a
brief external stimulus (Mehring et al., 2003). A later study
showed that it was possible to embed two neural trajectories with
a randomly connected recurrent network in a manual manner, that
is, when the synaptic weights were explicitly assigned between sub-
groups of neurons in a feedforward manner (Kumar et al., 2008).
While controlling dynamics and adjusting the weights of synapses in
recurrent networks remains a fundamental challenge, it should be
pointed out that theoretical studies have shown that even recurrent
networks with random weights can be used to perform functional
computations (Buonomano, 2000; Medina and Mauk, 2000; Maass
et al., 2002), and that carefully controlling the feedback from output
units into the recurrent network offers a promising way to control
dynamics in the absence of synaptic plasticity within the recurrent
network (Jaeger and Haas, 2004; Maass et al., 2007).

Synaptic learning rules in recurrent networks
Traditional learning rules such as STDP (Song et al., 2000; Song
and Abbott, 2001), and synaptic scaling (van Rossum et al., 2000)

have been studied primarily in feedforward networks (and/or
networks that do not exhibit temporal dynamics). A number of
recent studies have incorporated synaptic learning rules into net-
works driven by spontaneous activity and shown that in some
cases stable firing rates or spike patterns can be observed (Renart
et al., 2003; Izhikevich et al., 2004; Izhikevich, 2006; Izhikevich
and Edelman, 2008; Lubenov and Siapas, 2008). One synaptic
learning rule that would appear to be well suited to guide network
dynamics to stable dynamical regimes is synaptic scaling (van
Rossum et al., 2000). However, it has been previously shown that,
when recurrent networks are driven by transient synaptic activ-
ity, synaptic scaling is inherently unstable (Buonomano, 2005),
and can underlie repeating pathological burst discharges (Hou-
weling et al., 2005; Fröhlich et al., 2008). Additionally, a number
of experimental studies have shown that while synapses may be
up or downregulated in a homeostatic manner, this form of plas-
ticity does not always obey synaptic scaling (Thiagarajan et al.,
2005, 2007; Goel and Lee, 2007). Interestingly, feedforward and
recurrent networks may exhibit fundamentally different forms of
homoeostatic plasticity; Kim and Tsien (2008) reported that while

Figure 6. Sensitivity to background spiking noise with different learning rules. A–D, Neurograms of the trajectories produced by training with one (A, C) and two stimuli (B, D) averaged over 200
posttraining trials. Each line represents the normalized PSTH of a single unit. Simulations were performed without spontaneous spiking activity (rate � 0) or with spontaneous spikes (1 Hz Poisson
noise). Neurograms show the increased jitter in the presence of noise [performance: (A) p � 0.99 (left), p � 0.49 (right); (C) p � 0.6 (left), p � 0.57 (right); (B) p � 0.87 (left), p � 0.32 (right);
(D) p � 0.92 (left), p � 0.45 (right)]. Compared with PSD, the neural trajectories of networks trained with PSD�STDP were more robust because they exhibited less jitter.

Figure 7. Examples of the efficiency and RI measures using simple networks. Arrows indicate the direction of synaptic connec-
tions from pre- to postsynaptic neurons. Note that E decreases from B to C, and E to F, because the weights are normalized to the
maximum. Assigned weights are equal to 1 and 2, for the thin and thick lines, respectively.
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inactivity increases the strength of CA33CA1 (feedforward) syn-
apses, the same was not true in CA33CA3 (recurrent) synapses.
Consistent with the theoretical studies cited above, it was sug-
gested that this difference was related to the fact that synaptic scaling
could contribute to the induction of epileptic like activity. The rea-
son synaptic scaling is unstable in recurrent networks is precisely
because the ratio of all the synaptic strengths onto a given postsyn-
aptic neuron is constant (i.e., they are scaled). The presynaptic-
dependent scaling rule used here relies on a modification of the
conventional synaptic scaling rule in which the postsynaptic neuron
preferentially changes the weight of those presynaptic neurons that
have high average (cross-trial) levels of activity. We have shown that
this learning rule can lead to multiple neural trajectories within re-
current networks. PSD by itself, however, is limited in its ability to
embed multiple neural trajectories and in the sensitivity of these
trajectories to noise. Interestingly, PSD together with STDP gener-
ated more robust neural trajectories, Thus, in this framework STDP
played an important role in tuning or “burning in” the trajectories
generated by PSD, but was not actually necessary for their formation.

Biological plausibility of PSD and experimental predictions
While distinct from the traditional description of homeostatic
plasticity in the form of synaptic scaling (van Rossum et al.,
2000), PSD is nevertheless a extension of synaptic scaling that
includes a term that captures the average levels of presynaptic
activity. Consequently, PSD predicts that not all synapses will be
scaled equally, rather that those synapses from presynaptic neu-
rons that have higher average rates of activity will be increased
more than others. It is important to note that this prediction is
not inconsistent with the current experimental findings that sup-
port synaptic scaling. Specifically, for the most part these studies
have relied primarily on global pharmacological manipulations
that would be expected to the level of activity of all neurons
equally (Turrigiano et al., 1998; Karmarkar and Buonomano,
2006; Goel and Lee, 2007). Under these conditions synaptic scal-
ing and presynaptic-dependent scaling are essentially equivalent
since the presynaptic term in Equation 1 will on average be the
same for all synapses.

The experimentally testable prediction generated by PSD is
that if during a global decrease in activity, some neurons never-
theless exhibit higher than average levels of activity, the syn-
apses from these neurons will be preferentially potentiated.
This prediction could be tested in a number of ways. First, par-
tially blocking network activity with glutamatergic antagonists,
while electrically or optically stimulating a subset of neurons in
the network. Second, it has been shown that overexpressing a
delayed rectifier potassium channel causes cells to exhibit de-
creased activity (Burrone et al., 2002), PSD predicts that coupled
with partial activity blockade these cells would on average would
generate weaker synapses onto postsynaptic neurons.

Implicit in the notion synaptic of scaling, PSD, or any other
form of homeostatic plasticity, is that cells must be able to track
their average levels of activity over windows of minutes or hours
to trigger synaptic and cellular mechanisms to upregulate or
downregulate activity. The mechanisms that allow neurons to do
this remain unidentified, but it is suggested that this may be
accomplished by Ca 2�-sensors with long integration times
(Liu et al., 1998), and that activity-dependent changes in the
release of growth factors, such as BDNF and TNF�, may signal
changes in neuronal activity levels (Stellwagen and Malenka,
2006; Turrigiano, 2007).

Network recurrency
In recent years there has been an increased interest in under-
standing the relationship between network structure and the
functional properties of networks. These analyses have been per-
formed in the context of mathematical graph theory of complex
networks (Sporns et al., 2004), where a number of measures have
been developed to characterize the degree of complexity of neural
networks from the viewpoint of the small-world network topol-
ogy (Watts and Strogatz, 1998; Bassett et al., 2008), and network
motifs analysis (Sporns and Kötter, 2004). Most of these studies
have focused on binary networks, that is, connections between
nodes are either present or absent. Some recent studies, however,
have began to address more complex networks as directed weighted
graphs (Boccaletti et al., 2006), which is particularly important

Figure 8. Network recurrence increases with increasing number of stimuli and is inversely correlated with the performance. A, Both E and RI increase as the number of stimuli used to train the
network increases – independently of whether PSD (blue) or PSD�STDP (red) was used. B, Correlation coefficients between E and RI and the performance for a given stimulus number are negative.
The asterisk represents a significant correlation ( p � 0.05). The green asterisks indicate the data shown in C. C, An example of the data for the correlations shown in B. E (top) or RI (bottom) are
plotted against performance for networks trained with five stimuli. The green line represents the linear fit of the 10 points, each of which represents a simulation with different random seeds.
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for neural networks. To date, however, few studies have at-
tempted to relate the architecture of recurrent neural networks
with their neural dynamics. The efficiency measure used in the
present study relates to the “interconnectedness” and complexity
of networks (Latora and Marchiori, 2001) (Fig. 8). We also intro-
duced a new measure, the recurrence index, which provides a
more direct measure of what neuroscientists refer to as recur-
rence. As with efficiency, the RI could be modified to incorporate
the weights of the synaptic connections, however, in the current
study we used a threshold of 25% of the maximum value to
generate a binary representation of the network.

In our study both the efficiency and RI measures generated
similar conclusions, although we find the RI measure is more
meaningful. For example it insures a value of zero for a feedfor-
ward network. The RI measure revealed that when trained on a
single stimulus, the network was essentially functionally feedfor-
ward. However, the complexity of the networks, as well their RI,
increased with the number of trained stimuli and embedded tra-
jectories. Furthermore, there was a significant variation in net-
work structure, revealed by E and RI, over different replications
(i.e., different random number generator seeds). The fact that the
efficiency and RI were inversely correlated with performance
within an experimental condition indicates that these measures,
do indeed, capture a fundamental property of network structure.

Future directions
Two important issues that should be addressed in future studies
relate to the trajectory capacity and the maximal time intervals
that can be encoded in these trajectories. The capacity of the
network was fairly low (Fig. 4), only 4 or 5 trajectories in a net-
work of 500 units. We speculate that incorporation of inhibitory
plasticity, which was absent in our simulations, may play an im-
portant role in embedding a larger number of trajectories and
thus the capacity of these networks. Additionally, it is important
to note that each trajectory recruits every neuron in the network,
that is, each trajectory was of length N. While this number is on
the same order of some theoretical estimates (Herrmann et al.,
1995), others have shown that networks of similar size can gen-
erate thousands of trajectories; however, in this case each was of
length on the order of 10 neurons (Izhikevich, 2006). Indeed, an
important question relates to the numbers of neurons that par-
ticipate in a given trajectory. While this issue remains to be re-
solved it appears that in some cortical areas, such as premotor cortex,
it is indeed the case that a large percentage of local neurons partici-
pate in the production of a given motor pattern (Moran and
Schwartz, 1999; Churchland et al., 2006).

The time span of each trajectory was also relatively short, be-
tween 100 and 200 ms. This is the time scale of the evoked neural
patterns observed in vitro (Buonomano, 2003; Beggs and Plenz,
2004; Johnson and Buonomano, 2007). It is clear, however, that
in vivo the generation of longer neural trajectories is critical for
many types of timing and motor control. Future studies must
examine how longer trajectories emerge in a self-organizing
manner. It has been suggested that the inclusion of longer, yet
experimentally derived, synaptic delays (Izhikevich, 2006), or
that appropriately controlling feed-back within recurrent net-
works (Maass et al., 2007), may play a critical role in allowing
recurrent networks to generate long-lasting patterns of activity.
Additionally, it is possible that the recurrent structure of cortical
networks are composed of embedded feedforward architectures,
that are better suited for encoding trajectories lasting on the order
of seconds (Ganguli et al., 2008; Goldman, 2009).

Undoubtedly, the brain relies on a number of synaptic learn-
ing rules operating in parallel to control and generate neural
trajectories within recurrent networks. It is likely that many of
these rules remain to be elucidated both at the experimental and
theoretical level. However, the results described here demon-
strate that PSD is capable of leading to stable dynamical behavior
in recurrent networks in a unsupervised manner. Furthermore,
the trajectories capture some of the features observed in in vitro
cortical networks (Buonomano, 2003; Beggs and Plenz, 2004;
Johnson and Buonomano, 2007).
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