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The discrimination of complex auditory stimuli relies on the spatiotem-
poral structure of spike patterns arriving in the cortex. While recordings
from auditory areas reveal that many neurons are highly selective to spe-
cific spatiotemporal stimuli, the mechanisms underlying this selectivity
are unknown. Using computer simulations, we show that selectivity can
emerge in neurons in an entirely unsupervised manner. The model is
based on recurrently connected spiking neurons and synapses that ex-
hibit short-term synaptic plasticity. During a developmental stage, spo-
ken digits were presented to the network; the only type of long-term
plasticity present was a form of homeostatic synaptic plasticity. From
an initially unresponsive state, training generated a high percentage of
neurons that responded selectively to individual digits. Furthermore,
units within the network exhibited a cardinal feature of vocalization-
sensitive neurons in vivo: differential responses between forward and
reverse stimulus presentations. Direction selectivity deteriorated signif-
icantly, however, if short-term synaptic plasticity was removed. These
results establish that a simple form of homeostatic plasticity is capable
of guiding recurrent networks into regimes in which complex stimuli can
be discriminated. In addition, one computational function of short-term
synaptic plasticity may be to provide an inherent temporal asymmetry,
thus contributing to the characteristic forward-reverse selectivity.

Color versions of some figures are available in the online supplement at
http://www.mitpressjournals.org/doi/suppl/10.1162/NECO a 00345.
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1 Introduction

Sensory stimuli are defined by the spatiotemporal pattern of action po-
tentials they elicit at the level of our sensory organs. Based on these spa-
tiotemporal patterns, the central nervous system makes sense of the external
world. Some stimuli, such as a vertical or horizontal line or tones of differ-
ent pitches, are characterized primarily by their spatial signature—that is,
by which sensory afferents are active. Other stimuli, such as a 100 or 200 ms
tone, must be discriminated based on their temporal signature. Many stim-
uli, perhaps most, are defined by their spatial and temporal features. Speech,
for example, is rich in spatiotemporal structure, and degrading either the
spatial or temporal features impairs speech recognition (Drullman, 1995;
Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995).

Recordings in the auditory system of birds (Margoliash, 1983; Doupe,
1997; Sen, Theunissen, & Doupe, 2001; Gentner & Margoliash, 2003; Prather,
Nowicki, Anderson, Peters, & Mooney, 2009) and of mammals (Kilgard &
Merzenich, 2002; Engineer et al., 2008; Yin, Mishkin, Sutter, & Fritz, 2008;
Sadagopan & Wang, 2009) have revealed neurons that respond selectively
to complex spatiotemporal stimuli. It is generally assumed that these neu-
rons contribute to vocalization and speech recognition. The mechanisms
responsible for the selectivity to spatiotemporal stimuli, however, remain
unknown. Indeed, the neural mechanisms underlying the discrimination
of even simple intervals remain a mystery (Mauk & Buonomano, 2004;
Ivry & Schlerf, 2008). This stands in contrast to the mechanisms underlying
simple forms of spatial selectivity, such as pitch or orientation tuning (Bi-
enenstock, Cooper, & Munro, 1982; Ferster & Miller, 2000; Song & Abbott,
2001).

A number of models have proposed that the sensitivity to the temporal
features of stimuli may rely on specialized neural mechanisms, such as de-
lay lines, or ad hoc circuitry in which the timing of inhibition is tuned to gen-
erate interval- and order-selective neurons (Moore, Desmond, & Berthier,
1989; Lewicki & Konishi, 1995; Saitoh & Suga, 1995; Fiala et al., 1996; Drew
& Abbott, 2003; Aubie, Becker, & Faure, 2009; Razak & Fuzessery, 2009).
It has also been proposed that recurrent neural networks are intrinsically
capable of temporal processing as a result of the inherently time-varying
nature of neuronal properties and network dynamics. Specifically, in the
same manner that the ripples produced by two raindrops falling on a pond
contain a signature of which fell first and the interval between them, the
dynamics of neural networks might naturally encode the recent tempo-
ral history of stimuli. Selectivity arises from the inherent complexity and
nonlinearity of cortical architecture and the interaction between incom-
ing information and the internal state of the network. This framework has
been referred to as a state-dependent network (Buonomano & Merzenich,
1995; Buonomano, 2000) or, in the context of machine learning, a liquid-
state machine (Maass, Natschläger, & Markram, 2002, 2003) or reservoir
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computing. Useful to understanding this framework is the realization that
at any given point in time, the internal state of a network is characterized by
two components (Buonomano & Maass, 2009): the active state, defined by
which neurons are active (if any), and the hidden state, which captures the
time-dependent changes in synaptic and cellular properties such as short-
term synaptic plasticity (STP). STP refers to the ubiquitous use-dependent
changes in synaptic strength that occur over a timescale of tens to hundreds
of milliseconds (Zucker, 1989; Abbott & Regehr, 2004).

A weakness of this framework, to date, however, has been that while
the weights and connectivity are random, the average values still have
to be fairly finely tuned. Additionally, few of these models have incor-
porated synaptic plasticity within the recurrent connections. Specifically,
due to the highly nonlinear dynamics of recurrent cortical circuitry, it has
proven challenging to incorporate synaptic plasticity rules that guide these
networks to appropriate regimes (Doya, 1992; Pearlmutter, 1995). Here we
show that when the state-dependent network framework is coupled with
a homeostatic plasticity rule, units in the network develop selective re-
sponses to spatiotemporal stimuli in an unsupervised fashion. Specifically,
after exposing the network to spoken digits, many units became selective
to these digits. This provides one of the first models demonstrating how
vocalization-selective neurons can emerge in complex recurrent networks
in an unsupervised fashion. Additionally, we explicitly examined the im-
portance of short-term synaptic plasticity in the formation of digit-selective
units and demonstrate that it significantly enhances the discrimination of
forward versus reverse digits. In other words, short-term plasticity may
contribute to the brain’s sensitivity to temporal direction that is responsible
for the unmistakable perceptual differences between forward and reverse
vocalizations.

2 Methods

2.1 Data Set. We used a benchmark data set of 100 spoken digits: 10
utterances of each of the digits 0 through 9, from speaker 1 of the TI46
database. Starting with the stimulus waveforms, we used the Auditory
Toolbox (Malcolm Slaney) and the LyonPassiveEar command to generate a
cochleagram that was used to drive 18 integrate-and-fire units representing
cochlear nerve fibers (with a maximum frequency of 5 kHz). The spiking
responses of these units served as the input to our cortical network.

2.2 Cortical Network. All cortical network simulations were performed
using the NEURON simulation package (Hines & Carnevale, 1997). The
cortical network was designed to represent a simplified cortical column; 18
input neurons (IN) relayed information from the auditory periphery and
synapsed onto L-IV neurons. L-IV neurons both received and sent projec-
tions to a population of L-II/III neurons. In total, the column was composed
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of 400 excitatory (Ex) and 100 inhibitory (Inh) integrate-and-fire neurons.
This ratio of Ex to Inh cell counts approximates what has been estimated
throughout cortex, including primary auditory cortex (Prieto, Peterson, &
Winer, 1994). Neurons were modeled as cylinders with both a length and
diameter of 10 μm. Ex and Inh cells had a resting membrane potential of
−60 mV each, a membrane time constant of 30 and 10 ms, and an action
potential threshold drawn from a normal distribution N(−40 mV, 2 mV) and
N(−45 mV, 2.25 mV), respectively. Each neuron possessed four sources of
current: a leakage current, an afterhyperpolarization (AHP) current, synap-
tic currents, and a noise current. The leak conductance for all cells was set
at 0.1 mS/cm2 with a reversal potential of −60 mV, providing an input
resistance of 3.18 G�. When the action potential threshold was reached,
the cell’s voltage was set to 40 mV for 1 ms and then reset to −60 and
−65 mV for Ex and Inh units, respectively. Upon reset, the AHP was in-
cremented by .07 and .2 mS/cm2 and then decayed with a time constant
of 10 and 2 ms for Ex and Inh units, respectively. The AHP reversal poten-
tial was set at −90 mV. A noise current pulled from a uniform distribution
between −.5 and .5 pA was injected into each cell at each 0.1 ms time
step.

The network was initialized with random connectivity, with connec-
tion probabilities of 12.5% for Ex→Ex, 10% for Inh→Ex, and 2.5% for
Ex→Inh synapses. Each input neuron projected to 12 Ex and 3 Inh neurons.
All synapses were simulated using a kinetic model (Destexhe, Mainen, &
Sejnowski, 1994; Buonomano, 2000). IN→Ex and IN→Inh synaptic effica-
cies were fixed at 2 nS and 1.67 nS, respectively, with synaptic delays of
0.8 ms. The input thus strongly drove activity in L-IV neurons. All cortical
excitatory synapses contained plastic AMPA (EAMPA = 0 mV) and NMDA
(ENMDA = 50 mV) components. NMDA receptor conductances were given
a weight of 0.3 times that synapse’s AMPA conductance. The weights of the
inhibitory GABAergic synapses (EGABA = −70 mV) were fixed with a mean
of 20 nS (except for Figure S2, where this parameter was systematically
varied). (All figure numbers preceded by “S” are in the online supplement.)
AMPA Ex→Ex and Ex→Inh weights were initialized with a mean of .02 nS
and .1 nS, respectively. To prevent any individual synapses from causing
a postsynaptic neuron to fire, Ex→Ex and Ex→Inh weights were bounded
from above at 2 nS and 5 nS, respectively. Synaptic delays were set at 1.4 ms
for Ex→Ex, 0.8 ms for Ex→Inh, and 0.6 ms for Inh→Ex. All synapses ex-
hibited STP modeled according to Markram, Wang, and Tsodyks (1998). In
this model, synaptic efficacy is determined at each spike by the product of
two variables, R and u. R, which has an initial value of 1, represents the
amount of remaining synaptic efficacy. After the first action potential in a
trial, R is

R1 = 1 − U, (2.1)
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where U is a constant representing the synaptic efficacy utilized by the first
action potential. For subsequent spikes, the remaining and utilized efficacy
are characterized by two parameters, τrec and τ f acil , representing the time
constant with which each decays to its initial value. Thus, the remaining
synaptic efficacy following the (n + 1)th spike is governed by

Rn+1 = Rn(1 − un+1) exp
(

− �t
τrec

)
+ 1 − exp

(
− �t

τrec

)
, (2.2)

where �t is the interspike interval and un+1 is the efficacy utilized by the
(n + 1)th spike. u, which incorporates a facilitation term, is governed by

un+1 = un exp

(
− �t

τ f acil

)
+ U

(
1 − un exp

(
− �t

τ f acil

))
. (2.3)

In the simulation, excitatory synapses exhibited short-term facilitation,
with τ f acil = 250 (500) ms, τrec = 25 (125) ms, and U = .25 (.2) for Ex→Ex
(Ex→Inh) synapses. Inhibitory synapses exhibited short-term depression,
determined by τ f acil = 20 ms, τrec = 700 ms, and U = .25. Finally, input
synapses exhibited facilitation, characterized by τ f acil = 500 ms, τrec =
125 ms, and U = .2.

2.3 Training and Synaptic Plasticity. Training occurred across 1000
stimulus blocks, each block consisting of 10 trials (two utterances of five
digits). Only 10 stimuli were used during each training block for reasons
of computational load. The choice of the digits used during training sig-
nificantly affected the ability of different digits to drive network activity
and the forward selectivity (see section 4), but did not produce significant
differences in the direction selectivity between the trained and untrained
digits. Synaptic weights were updated at the end of each trial. After the
completion of training, plasticity was turned off, and 10 more blocks were
run using the entire stimulus set, including both forward and reverse digit
presentations (for a total of 2000 trials).

In the initial state, the input projections to the L-IV units were strong
and robustly drove activity in these units. However, the recurrent synapses
between all Ex→Ex and Ex→Inh units were set to very low (but nonzero)
values. Consequently, none of the L-II/III Ex units spiked during early stim-
ulus presentations. The network was trained using presynaptic-dependent
scaling (PSD). PSD, a modified form of synaptic scaling, is consistent
with current experimental data, but in contrast to synaptic scaling, it gen-
erates stable dynamics within recurrent neural networks (Buonomano,
2005).
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Synaptic weights were updated according to

Wτ+1
i j = Wτ

i j + αW Aτ
i (Agoal − Aτ

j )W
τ
i j. (2.4)

Here Wτ
i j is the synaptic weight from neuron i to j at trial τ ; αW represents

the “learning” rate, set to 5 × 10−4; and Agoal is the target activity for the
postsynaptic neuron. Target activity levels were randomly set at .25, .5, or
.75 for each neuron. By requiring activity values to average between 0 and
1 spikes per trial, the cortical network sparsely coded the input stimulus as
well as refrained from runaway excitation, a common problem in recurrent
neural networks (Buonomano, 2005). Aτ

i is a running average activity of the
ith neuron in trial τ , calculated as

Aτ+1
i = Aτ

i + αA(Sτ
i − Aτ

i ). (2.5)

αA = .04 (.2) controls the across-trial integration of activity for Ex (Inh) cells.
Sτ

i is the number of spikes by neuron i in trial τ .

2.4 Quantification of Selectivity. In order to estimate the preference of
a neuron for different digits, a selectivity index was defined as

SI = RSmax − RS

RSmax + RS
, (2.6)

where RSmax is the maximal mean response to any digits (averaged over
all utterances), RS is the mean response to the remaining N − 1 digits.
Values of SI are bounded between 0 and 1. To test for significant selectivity,
we shuffled the responses of each neuron to all stimuli and calculated an
SIshuffled. This was done 1000 times, and the SI was considered significant if
it was greater than 99% of all SIshuffled values.

In the same fashion, we calculated the direction selectivity of each cell
for each digit by computing

SIdir = RSFor − RSRev

RSFor + RSRev
, (2.7)

where RSFor and RSRev are the mean responses to the forward and reverse
presentations of that digit, respectively. Significance was tested by compar-
ing the absolute value of SIdir and the 99% threshold derived from shuffling
all responses to that digit.

2.5 Readout Units. In some experiments, we wanted to determine the
ability of the population of all Ex neurons to discriminate the stimulus set.
Toward this end, we added a layer of readout units, each of which received
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an input from all of the excitatory units in the cortical network. The read-
out neurons were trained using a tempotron learning rule to discriminate
the digits (Gutig & Sompolinsky, 2006). This is a supervised learning rule
in which, if the postsynaptic neuron did not fire to the target (“positive”)
stimulus, the weights of the synapses whose activity contributed to the
maximum voltage are increased in a manner proportional to that contri-
bution. If the readout unit fires at any point during a “negative” stimulus,
the synaptic weights of each synapse are decreased in proportion to their
contribution to the incorrect spike. All weights were initialized to zero and
allowed to range between .2 and −.2 μS. Weights were increased with a
learning rate of .001 when the output neuron’s response was a false neg-
ative and decreased with a learning rate of .0001 when the response was
a false positive. A population of five output neurons was assigned to each
stimulus class (i.e., a digit). Upon spiking, each neuron evoked a lateral in-
hibitory current in all other readout neurons (gLI = .15 μS), encouraging the
neurons in each population to extract distinct spatiotemporal patterns from
the cortical network. Classification was determined based on the group with
the highest total number of spikes. We trained the network using a leave-
one-out cross-validation scheme, withholding one utterance of each digit
to test for generalization. When training readouts to discriminate forward
and reverse digits, we used 20 populations (10 digits × 2 directions) of 5
units (100 total readout units). We used the tempotron learning rule strictly
to estimate the amount of spatiotemporal information present in the corti-
cal network, but we emphasize that we do not view it as a mechanistically
realistic supervised learning rule.

2.6 Removal of Short-Term Plasticity. In order to examine the effect
of short-term plasticity on the spatiotemporal selectivity of the cortical net-
work, we removed short-term plasticity by setting all values for τ f acil and
τrec to zero. This alone, however, resulted in a net decrease in network ac-
tivity because of the absence of short-term facilitation. To ensure that the
network received the same average level of input, we calculated the aver-
age activity of all L-IV neurons over 200 stimulus presentations. We then
varied the IN→Ex weights in the network without STP until the activity
matched that of the network with STP intact. The approach revealed that
an increase in the “baseline” strength of IN→Ex weights of 20% (to 2.4 nS)
compensated for the absence of STP; thus this value was first used for all
NoSTP simulations. Additionally, to compensate for the need for stronger
synapses, we doubled the maximum Ex→Ex and Ex→Inh weights.

3 Results

The network architecture is schematized in Figure 1. It contained 400 ex-
citatory and 100 inhibitory integrate-and-fire units. Input was provided
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Figure 1: Network architecture. A layer of input channels feeds into a recurrent
cortical network composed of excitatory (dark gray) and inhibitory (light gray)
integrate-and-fire neurons. A subset of neurons (L-IV) is driven strongly by
the input via synapses that do not undergo plasticity, whereas the remaining
(L-II/III) are driven solely by the propagation of activity within the cortical net-
work. Cortical excitatory neurons synapse onto both excitatory and inhibitory
cells, while inhibitory neurons synapse only onto excitatory cells. All excitatory
connections between the cortical cells were plastic. In some simulations, a layer
of readout units was used to perform digit classification.

by 18 input fibers, each representing a frequency band. The stimulus set
consisted of a benchmark of 10 (0–9) spoken digits (10 utterances of each).
Spoken digits were converted into spatiotemporal patterns of spikes using
a simulated cochleagram (see section 2). Since our focus is on early stages
of sensory processing, all digits were from a single speaker. We do not ex-
pect our model to generate significant speaker invariance; however, it is
noteworthy that even the different utterances from a single speaker vary
significantly in their spatial and temporal features. Figure 2 illustrates the
range of the temporal variability of utterances by showing the shortest and
longest instances of each digit, as well as the duration spread (see Figure 2B).

In the initial state, all cortical excitatory (Ex→Ex; Ex→Inh) synapses were
weak; thus, as illustrated in Figure 3, in the initial state only the L-IV corti-
cal units, which received direct input, fired. This initial state loosely reflects
early developmental stages in which most cortical neurons are weakly re-
sponsive or unresponsive to external stimulation and exhibit weak synapses
(Hubel & Wiesel, 1963; Echevarria & Albus, 2000).

For a neuron to create robust representations of sensory stimuli, an ini-
tially unresponsive neuron must develop responses to some of the stim-
uli to which an animal is exposed. A number of synaptic plasticity rules
are likely to contribute to this process, but since most of the units in the
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Figure 2: Variation in spectral and temporal properties of utterances. (A) Input
spike rasters depicting the shortest and longest utterance for each digit (left).
Rasters display action potentials in each input nerve fiber (y-axis) across time
and have been padded with zeros to 939 ms to maintain a constant timescale
for visualization. (Right) The thick line shows the average number of spikes
from that channel, with the shading indicating one standard deviation from the
mean. (B) Box-and-whiskers plot of utterance durations for each digit.

network are initially unresponsive, homeostatic forms of plasticity are ob-
vious candidates (note that the absence of postsynaptic spikes in the initial
state makes STDP ineffective in the early stages of processing; see section 4).
One type of homeostatic plasticity rule, synaptic scaling, has been shown
to be effective in bringing neurons embedded in feedforward networks
to desired average levels of activity (van Rossum, Bi, & Turrigiano, 2000;
Turrigiano & Nelson, 2004). However, theoretical work has suggested that
when used in recurrent networks, synaptic scaling can produce unsta-
ble and “pathological” states (Buonomano, 2005; Houweling, Bazhenov,
Timofeev, Steriade, & Sejnowski, 2005; Frohlich, Bazhenov, & Sejnowski,
2008; Liu & Buonomano, 2009). Here we used a modified version of synap-
tic scaling (see section 2), termed presynaptic-dependent (PSD) scaling, in
which changes in synaptic weights take into account the average levels of
activity in the presynaptic neurons (Buonomano, 2005).

For computational load reasons, only a subset of 10 stimuli (out of the
100) was presented in each training block (see section 2). At a learning
rate, αw, of 5 × 10−4 the mean level of activity (spikes per trial) gener-
ally converged toward the mean set point within 1000 training blocks (see
Figure 3B). The speed of convergence, however could be dramatically ac-
celerated by using a higher values of αw (see Figure 3B, gray line). Before
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Figure 3: Training of the cortical network. (A) Spectrogram of one of the digit
“four” utterances. (B) Convergence over training of the average activity to a
predetermined target value (set-point), averaged across all L-II/III Ex cells.
Synaptic weights were trained according to the presynaptic-dependent scaling
rule with αW = 5 × 10−4. The light gray line represents training with αW = .005,
showing faster, and still monotonic, convergence (even faster learning rates
can still converge, but in a nonmonotonic fashion). (C) Raster of cortical activity
prior (left) to and after (right) training. Notice that only L-IV neurons are initially
active due to strong and fixed input synaptic weights.

training with PSD, only the subset of units that received direct input fired
in response to a stimulus; after training, a significant number of Ex units
responded to the presentation of digit 4, and together 96% of all the neurons
responded to at least one of the stimuli used during training—indicating
that the excitatory cortical connections were now driving many of the units
and effectively spreading activity across the entire network (see Figure 3C).

3.1 Selectivity of the Cortical Units. After the completion of the 1000
training blocks, we presented each of the 10 utterances of the 10 digits a total
of 10 times in order to characterize the selectivity of each unit. Since one of
our major goals is to examine the emergence of neurons that are spatiotem-
porally selective, it is necessary to determine if any observed selectivity
is simply attributable to the spatial (spectral) content rather than the spa-
tiotemporal features of the spoken digits. A unit that responds selectively to
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Figure 4: Example of an L-II/III unit with strong digit and direction selectivity.
(A) Sonograms of the forward (top) and reverse (bottom) presentations of digit
“four.” (B) Poststimulus time histogram for a single neuron across all utterances
of digit “four” (top). It depicts the average firing rate over time for this cell in
response to the forward presentation (dark gray) and reverse presentation (light
gray), smoothed with a 5 ms wide gaussian filter. Raster of responses by the
same neuron across each trial and utterance (10 trials of each of the 10 utterances)
for that digit (bottom). Dark pixels represent spikes in response to the forward
presentation and light to the reverse presentation. (C) Raster plots showing the
response of this unit to all stimulus presentations.

“four” may simply be a frequency-tuned neuron responding to a frequency
present in “four” and may be totally insensitive to the temporal structure of
the stimulus. The traditional experimental method to determine if a neuron
is truly selective to spatial and temporal information is to contrast the re-
sponses to forward and reverse vocalizations (Wang, Merzenich, Beitel, &
Schreiner, 1995; Doupe, 1997; Recanzone, 2008; Huetz, Philibert, & Edeline,
2009; Razak & Fuzessery, 2008). Thus we also presented all stimuli reversed
in time.

We first characterized the receptive field characteristics of all the L-II/III
Ex units by calculating two selectivity indexes (see section 2): one to the
forward presentation of all stimuli (SI) and one based on the number of
spikes elicited by each digit played forward and backward (SIDir).

Figure 4 illustrates the receptive fields of an L-II/III unit that was
highly selective to the forward presentation of “four” compared to all other
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Figure 5: Distribution of selectivity within the cortical network. (A) As in Fig-
ure 4, the poststimulus time histogram for a different single neuron to all 10
digits. Dark gray traces and pixels indicate responses to forward stimuli and
light gray to reverse. This cell responds strongly to “one” and “two” with very
high direction selectivity (SIDir on right). Significant SIDir values are indicated in
italics. (B) Distribution of SI for all cortical L-II/III cells. The distribution peaks
at an SI of ∼.6, demonstrating that a large fraction of neurons in the network
was digit selective. (C) Distribution of SIDir for cortical L-II/III Ex cells. Notice
that the distribution has heavy tails with a large number of cells at each ex-
treme. Values range from −1 to 1, indicating high reverse or forward direction
selectivity, respectively. (B, C) Light gray lines represent distributions of SIshu f f led
values for all 4000 shuffles (1000 shuffles for each of four seeds).

forward digits (a high SI value). Note that even though different utterances
of the same digit vary in duration and spatiotemporal structure, this unit
responded reliably to all utterances of its preferred digit. This unit also
fired selectively to the forward utterances of “four” compared to the re-
verse utterances (a high SIDir). This unit did, however, fire to the reverse
presentation of one of the utterances of the digit “four.” It is noteworthy
that the selectivity to digits and direction emerged in a totally unsupervised
manner. Figure 5A provides an example of a slightly less selective unit that
fires to most of the utterances of two digits. Together 95% of the L-II/III Ex
units, all of which were unresponsive before training, exhibited a significant
SI value. The distributions of SI and SIDir of all L-II/III Ex units are shown
in Figures 5B and 5C. Note the asymmetry in the distribution of the SIDir
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values, indicating that units tend to prefer the forward compared to the
reverse direction. This average preference for forward digits remained if
the network was trained on reverse stimuli only; importantly, however, the
forward selectivity was significantly less (see Figure S1, t-test, p = .001).
The preference for forward stimuli is readily explained by the temporal
asymmetry in speech itself, where strong broadband onsets are common,
inducing greater firing, on average, to forward stimuli. However, the fact
that reverse training decreased average forward selectivity indicates that
the training stimuli per se are in part responsible for the final selectivity
profile. In other words, the final network state can be said to be experience
dependent.

To investigate the parameter sensitivity of the model, we parametrically
varied the mean strength of Inh→Ex synapses. This parameter is critical
because these synapses are not plastic in our implementation and because
the balance of excitation and inhibition is critical to stimulus selectivity and
network dynamics (Wilent & Contreras, 2005; Wu, Li, Tao, & Zhang, 2006;
Froemke, Merzenich, & Schreiner, 2007; Carvalho & Buonomano, 2009).
Figure S2 shows the average level of digit selectivity and direction selec-
tivity among L II/III excitatory neurons in the network. Our results show
robust levels of selectivity within the network across a six-fold range of
mean Inh→Ex strengths (4 nS to 24 nS), with decreasing levels of digit
selectivity and increasing levels of direction selectivity at higher levels of
inhibition (p = .0086, p = .014, respectively, one-way ANOVA).

3.2 Role of Short-Term Plasticity in Selectivity. Spatiotemporal selec-
tivity, by definition, requires that neurons be sensitive to the order or in-
terval between different spectral features. In the state-dependent network
model, this ability derives from the fact that the state of the network at
any point in time t encodes the recent features of the incoming stimuli. As
mentioned in section 1, the internal state is defined by the active and hidden
state (Buonomano & Maass, 2009). In the current simulations, the hidden
state is primarily constrained to the short-term changes in synaptic strength
imposed by short-term synaptic plasticity, while the active state refers to
any ongoing firing in the population. To attempt to dissect the contribution
of the short-term synaptic plasticity to the spatiotemporal selectivity, we
repeated the above simulations after removing short-term plasticity from
all the synapses in the network (see section 2).

Short-term plasticity provides an inherent temporal asymmetry to the
network; for example, the EPSP amplitude of the third pulse of the pat-
tern 0-50-200 ms, will be different from that of the pattern 0-150-200 ms.
Thus, we hypothesized that short-term plasticity may contribute primarily
to direction selectivity. After we trained a network without any short-term
plasticity, a large number of units continued to be selective for the for-
ward digits, although the overall distribution of SI shifted significantly
downward (see Figure 6A, KS-test, p < 0.01). More important, there was a
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Figure 6: Comparison of selectivity between STP and no STP groups. (A) Cu-
mulative distribution of selectivity indexes (SI) of all L-II/III cells for STP and no
STP groups. Short-term plasticity enhances digit selectivity within the cortical
network (p = .006, two-sample KS-test; subtle rightward position of the default
network with STP). (B) To compare the overall levels of direction selectivity in
the presence and absence of STP, we averaged the absolute value of each L II/III
cell’s SIDir across all digits. The cumulative distribution of these averaged val-
ues depicts greatly increased direction selectivity in cortical networks with STP
(p = 10−38, two-sample KS-test). (C) Comparison of the average SIDir values be-
tween the STP and no STP groups. The difference between groups is significant
(p = 3 × 10−4, t-test). (D) Comparison of the number of direction-selective cells
between groups. There are significantly more direction-selective neurons in the
STP group (p = .0016, t-test). Error bars represent SEM across four simulations
with different random seeds.

significant shift in the distribution of SIDir values toward decreased selec-
tivity (see Figure 6B; KS test, p = 10−38) with a corresponding significant
decrease in the mean SIDir (t-test, p < 0.001) and the number of units with
significant SIDir values (t-test, p = 3 × 10−4, p = .0016; see Figures 6C and
6D). This finding was robust across levels of inhibition within the network
(see Figure S2).

3.3 Digit Discrimination. The above results demonstrate that a simple
homeostatic plasticity rule can lead to the emergence of units that respond
selectively to spoken digits across different utterances. But the fact that
most cells exhibited significant SI and SIDir values does not mean that every
digit was well represented in the network. Indeed, some digits were the
preferred stimulus of only a few neurons in the network. But as previously
proposed, the notion is that together, the varying degrees of selectivity serve
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Figure 7: Performance on digit discrimination task. (A) Readout neurons were
trained to discriminate each of the 10 digits using input from the trained cortical
network (STP), the cortical network trained in the absence of short-term plastic-
ity (no STP), the untrained cortical network (Untrained), and directly from the
input channels (no cortex). (B) Percentage error in classification when discrimi-
nating the forward (left) and forward and reverse (right) digits across all groups.
Error bars represent SEM across four simulations with different random seeds.
The readout network performed similarly on the forward digit discriminations
across all cortical groups (5.3–7.5% error). Performance on the no cortex group,
however, was significantly worse than the cortex group (11.5% versus 5.3%
error, p = .016, t-test). Performance on the forward and reverse discrimination
task was best on the cortex group with an error rate of 12% (20%, p = .0016,
27%, p = 2.4 × 10−6, 63%, p = 1.2 × 10−4, t-test, from left to right).

as a basis for digit discrimination by neurons downstream from neurons in
primary sensory cortex. So to examine the potential ability of downstream
neurons to discriminate digits based on the pattern of activity in the cortical
units, we used a supervised learning rule to train a layer of output units to
discriminate among the 10 digits. Specifically we used the tempotron learn-
ing rule (Gutig & Sompolinsky, 2006), which provides the ability to process
continuous time signals, to train sets of readout neurons (see section 2).

As controls we compared performance of the readout units trained on
patterns from the cortical network versus (see Figure 7A): readout units
trained on the cortical network without STP; the untrained cortical network
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(i.e., the output of the L-IV units); and no cortex (i.e., the spike patterns
generated from the cochleagram). Note that the spatiotemporal patterns
from the cochleagram must contain all the relevant information for digit
discrimination, so any improvement in performance over the no cortex
group can be attributed to transformations imposed by the cortical circuits
that improve the readout of the information.

In the forward condition, the readout units were trained on 9 of the 10
utterances of each digit and tested on the omitted utterance (see Figure 7B,
left panel). In all four conditions, the readout units were able to discrimi-
nate among the forward digits well above chance level (error rates of less
than 12%, compared to chance error rates of 90%). However, the no cortex
condition performed the worst, and the error rate was significantly higher
than the cortex condition (11.5% versus 5.3%, t-test, p = .016), indicating
that the transformation imposed by the cortical circuitry significantly en-
hances the ability of the readout units to capture the digit-specific signature
of the input patterns.

The reasonable performance of the readout units even in the absence of
the cortex is expected given the fact that many digits can be discriminated
based solely on their spectral signature, independent of their spatiotem-
poral features. To examine true spatiotemporal discrimination and better
capture the electrophysiological and perceptual findings that clearly show
high degrees of direction selectivity, we next trained the readout units to
discriminate among the forward and reverse instances of all the digits
(see Figure 7B, right panel). Here the performance of the readout units in
the no cortex condition was very bad (>60% error rates). Again the cor-
tical network performed the best (12.2% error rate) and was significantly
better than training in the absence of STP (20.4%, t-test, p = .002) or on the
naıve network (27.4%, t-test, p < 10−5). These results further support the
conclusion that STP may play a critical role in direction selectivity.

4 Discussion

A large number of in vivo electrophysiological studies have demonstrated
that auditory cortex neurons of mammals (Wang et al., 1995; Kilgard &
Merzenich, 2002; Yin et al., 2008; Sadagopan & Wang, 2009; Zhou, de Villers-
Sidani, Panizzutti, & Merzenich, 2010) or neurons in the song areas of song-
birds (Margoliash, 1983; Lewicki & Arthur, 1996; Doupe, 1997) can be highly
selective to the spatiotemporal structure of vocalizations. It is generally be-
lieved that this selectivity in the early stages of sensory processing is critical
to vocal communication.

Despite the importance of selectivity for the processing of complex stim-
uli, relatively little is known about the mechanisms and ontogenesis of this
selectivity. Previous models have demonstrated that selectivity to complex
stimuli can be observed in randomly connected networks (Buonomano
& Merzenich, 1995; Buonomano, 2000; Maass et al., 2002, 2003; Jaeger,



Unsupervised Formation of Vocalization-Sensitive Neurons 2595

Lukoševičius, & Popovici, 2007; Buonomano & Maass, 2009). However,
these state-dependent/liquid state machine approaches have required fine-
tuning the average weights to ensure the network operates in an appropriate
regime. Additionally, in the previous studies, as the result of the absence
of recurrent plasticity, there was no “tuning” to the stimulus set at hand.
Here we have shown for the first time that the appropriate regimes can be
reached in an entirely unsupervised manner; furthermore, there is some
degree of tuning of the network to the stimulus set at hand. In the initial
state of our cortical network model the L-II/III units were nonresponsive
to sensory stimulation, but the presynaptic-dependent scaling rule led to
the emergence of activity within the recurrent network and to neurons
that exhibited a wide range of selectivity values. This variability captures
the inherent diversity observed in vivo, in which some cells exhibit high
degrees of selectivity, while others seem to exhibit little or no selectivity.
Furthermore, we demonstrated that the distribution of selective neurons
provided a robust spatiotemporal code that allowed downstream neurons
to discriminate among digits with an accuracy of approximately 95%.

4.1 Forward Versus Reverse. To determine if neurons are truly selective
to the spatiotemporal structure of stimuli, as opposed to some characteristic
spectral signature, electrophysiological studies typically contrast the num-
ber of spikes elicited by forward and reverse presentation of stimuli. Results
often reveal a high degree of direction selectivity (Wang et al., 1995; Doupe,
1997; Theunissen & Doupe, 1998). Some studies, however, depending on
cortical area and the stimuli used, have not revealed significant selectiv-
ity between forward and reverse stimuli, yet even in these studies, there
was more information present about the forward stimuli than the reverse
(Schnupp, Hall, Kokelaar, & Ahmed, 2006; Recanzone, 2008). The reported
direction selectivity of some neurons is consistent with the obvious percep-
tual difference between forward and reverse stimuli. It is also important
to note that perceptual direction selectivity seems to be inherent in the un-
derlying neural mechanisms—not learned by experience. That is, cells in
the birdsong auditory system respond selectively to forward presentations
of song even though they were never exposed to the reverse presentations
during the life of the bird. Similarly, although someone may never have
heard his or her name said backward, nobody is in danger of confusing
the forward and reverse presentations of his or her name. Indeed, human
and animal studies show that animals are generally very sensitive to time-
reversed stimuli (Doupe & Kuhl, 1999; Saberi & Perrott, 1999; Ghazanfar
& Hauser, 2001), although there are exceptions (Mathevon & Aubin, 2001;
Ghazanfar, Smith-Rohrberg, Pollen, & Hauser, 2002).

Here we show that the state-dependent nature of cortical network
dynamics seems to naturally account for the emergence of direction
selectivity—at least in a significant percentage of neurons. We further estab-
lish that short-term synaptic plasticity is partly responsible for the observed
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direction sensitivity of the units. Indeed, as previously suggested, short-
term synaptic plasticity provides an inherent temporal asymmetry, thus
allowing for the processing of both temporal and spatiotemporal discrimi-
nation (Buonomano, 2000). Importantly, while STP contributes in a funda-
mental manner to imposing a temporal asymmetry that permits direction
selectivity, homeostatic plasticity drives the network to regimes capable of
efficiently coding for different digits. This will occur in either the presence
or absence of STP. Thus, both mechanisms act essentially independently.

Together our results lead us to the prediction that if short-term plasticity
could be selectively turned on or off (or altered in a controllable fashion),
there would be a significant decrease in the number of direction-selective
neurons. Moreover, the discrimination of complex spatiotemporal patterns,
such as speech, would be much more severely affected than the discrimi-
nation of complex spatial stimuli, such as images.

4.2 Homeostatic Plasticity. The simulation presented here used the
PSD plasticity rule, a hypothesized form of homeostatic plasticity (Buono-
mano, 2005; Liu & Buonomano, 2009). This rule is distinct from the tra-
ditional synaptic scaling plasticity rule (van Rossum et al., 2000) in that
the homeostatic changes in synaptic strength also depend on the average
levels of activity in the presynaptic cells. The rule overcomes the instability
observed in computational models of recurrent networks that only incor-
porate synaptic scaling (Buonomano, 2005; Houweling et al., 2005; Frohlich
et al., 2008). While PSD has not been directly tested experimentally, it is
important to highlight that it is consistent with most of the experimental
data used to support synaptic scaling. Additionally, in comparison to tra-
ditional synaptic scaling, PSD better accounts for observations in recurrent
circuits, demonstrating that decreased activity can lead to both potentiation
and depression of synapses (Thiagarajan, Lindskog, & Tsien, 2005; Mitra,
Mitra, & Tsien, 2012). We stress, however, that we are not suggesting that
this is the only rule that may lead to the presented results.

4.3 Weaknesses. One limitation of our model is that all of our analysis
was based on selectivity to digits from a single speaker. It was, however,
not our goal to account for the more complex computational problem of
invariant pattern recognition. Indeed, there is little evidence that neurons
in early sensory cortices exhibit significant temporal or spectral invariance.
As has been hypothesized in the visual system with regard to scalar and
position invariance (Fukushima, 1988), speaker invariance may arise from
the increasing convergence of cells with little invariance onto cells with pro-
gressively more insensitivity to local spatial and temporal manipulations
of their preferred stimuli, although alternate models have been proposed
(Gutig & Sompolinsky, 2009).

A second limitation of our simulations was that we included only one
form of long-term synaptic plasticity: presynaptic-dependent scaling, a
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hypothesized form of homeostatic plasticity (Buonomano, 2005). Another
candidate form of plasticity that has been suggested to play a role in pro-
cessing complex time-varying stimuli is STDP (Abbott & Nelson, 2000; Dan
& Poo, 2004). While we expect STDP to contribute to general cortical plastic-
ity and organization, previous simulations have suggested that STDP may
not be ideally suited to be the principal plasticity rule for spatiotemporal
stimuli (Buonomano, 2005; Liu & Buonomano, 2009). One reason why re-
lates to what can be thought of as the latency reduction problem: STDP
by its very nature increases the synaptic strength between neurons that are
sequentially active within a time window of tens of milliseconds (Song,
Miller, & Abbott, 2000). As synapses become stronger, the latency of the
postsynaptic neuron becomes shorter and may shift toward the onset of a
stimulus, such as a spoken word. This latency reduction process can de-
crease the neuron’s selectivity to the temporal features of the stimuli. For
example, in the extreme, a neuron that fires at the onset of a spoken word
cannot be selective to any temporal features. Nevertheless it is our view,
and a line of future research, that if STDP is incorporated into recurrent net-
works in a balanced manner with other synaptic plasticity rules operating,
it may contribute to the formation of spatiotemporal selectivity. Indeed, in
a simpler model that focused on the detection of sequences of events, it
has been shown that STDP, together with synaptic scaling, enhances the
formation of sequence-selective neurons (Lazar, Pipa, & Triesch, 2009).

4.4 State-Dependent Networks. A cardinal feature of state-dependent
network models (Buonomano & Merzenich, 1995; Buonomano, 2000) and
so-called reservoir computing in general (Maass et al., 2003; Jaeger & Haas,
2004; Buonomano & Maass, 2009) is that the discrimination of complex time-
varying stimuli relies heavily on the inherent interaction between stimuli
and the complexity and highly nonlinear nature of neural networks (Buono-
mano & Maass, 2009). In other words, in the previous instantiations of this
class of models, selectivity is in a sense stochastic: given a large enough net-
work, complex circuitry, and a rich set of time-varying synaptic properties,
some subset of neurons should respond with some degree of selectivity to
almost any stimulus set (Buonomano & Merzenich, 1995; Maass et al., 2002;
Haeusler & Maass, 2007; Karmarkar & Buonomano, 2007; Buonomano &
Maass, 2009). This notion stands in contrast with the more typical view that
a neuron that responds selectively to a specific stimulus, direction, or inter-
val is the product of specific mechanisms and plasticity rules “designed”
to solve the particular problem at hand. Given the obvious complexity, the
statistical nature of network connectivity, and the apparent importance of
network size, we would maintain that our framework contributes to the
selectivity to spatiotemporal patterns in vivo. Indeed it is of relevance that
even when animals are presented ecologically unnatural or novel stimuli
(e.g., marmoset vocalizations to a cat) and there is no clear population bias
toward forward or reverse stimuli, some subset of neurons nevertheless
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prefers the forward or reverse stimuli—as if by chance (Wang & Kadia,
2001; Huetz et al., 2009). And the fact that some units fire selectively to the
reverse stimuli strongly suggests that in addition to the obvious learned
component of vocalization selectivity, there is also a stochastic component.

The work described here demonstrates that a simple form of homeostatic
plasticity is sufficient to guide the network into regimes where there is a
reasonable balance of excitation and inhibition (i.e., most neurons fire, but
there is no runaway excitation), and, more important, the neurons exhibit a
rich diversity of preferred responses. But the results extend beyond finding
a random pattern of weights that satisfies the above conditions and indi-
cates that in some sense, the network is tuned by stimulus set. First, we
established a significant decrease in direction selectivity when the network
is trained on the reverse stimuli (see Figure S1). Second, if the performance
of the network was entirely a product of finding an appropriate distribu-
tion of synaptic weights, there would be no decrement in performance if
the plastic weights were shuffled. As expected, shuffling resulted in a dra-
matic decrease in overall activity (which limits its value in making a direct
comparison with the unshuffled runs). Nevertheless, shuffling the weights
did produce a highly significant (p < 0.001) decrease in direction selectiv-
ity (see Figure S3). Furthermore, and most important, during training, only
half of the digits were used (see section 2); thus, it was possible to examine
if more cells were selective to the trained digits. The number of cells that
exhibited forward selectivity for digits 0 to 4 was more than were selective
for digits 5 to 9 when the network was trained on 0 to 4, and, conversely,
more cells were selective for 5 to 9 when trained on 5 to 9 (see Figure S4).
The training set, however, did not result in a difference in direction se-
lectivity between the trained and untrained digits. Together, our results
establish that the performance of the network relies on two factors: finding
the appropriate regime (which can also be achieved by randomly assigning
weights from an appropriate distribution) and stimulus-specific forms of
experience-dependent plasticity that tune specific weights in a manner that
amplifies performance.

While we argue that the reliance on the size and complexity of corti-
cal networks is both physiological and critical, it is nevertheless clear that
experience-dependent plasticity plays an important role in cortical func-
tion. Indeed a cardinal feature of cortical circuitry is its ability to adapt and
reorganize in accordance to the stimuli to which they are exposed (Buono-
mano & Merzenich, 1998; Feldman & Brecht, 2005; Karmarkar & Dan, 2006).
The synapses responsible for the recurrent architecture of cortical circuits
undergo a number of different forms of plasticity (Abbott & Nelson, 2000;
Dan & Poo, 2004; Turrigiano, 2008; Pozo & Goda, 2010). While we have rea-
sonable models of how these plasticity rules contribute to the processing
of spatial stimuli, an open challenge remains how these rules contribute
to the processing of complex time-varying stimuli. Here we have taken an
important step in this direction by showing that a relatively simple form
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of homeostatic plasticity is sufficient to guide naıve networks into regimes
where stimulus selectivity emerges.
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