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Our ability to generate well-timed sequences of movements is critical to an array of behav-
iors, including the ability to play a musical instrument or a video game. Here we address two
questions relating to timing with the goal of better understanding the neural mechanisms
underlying temporal processing. First, how does accuracy and variance change over the
course of learning of complex spatiotemporal patterns? Second, is the timing of sequential
responses most consistent with starting and stopping an internal timer at each interval
or with continuous timing? To address these questions we used a psychophysical task in
which subjects learned to reproduce a sequence of finger taps in the correct order and at
the correct times – much like playing a melody at the piano.This task allowed us to calculate
the variance of the responses at different time points using data from the same trials. Our
results show that while “standard” Weber’s law is clearly violated, variance does increase
as a function of time squared, as expected according to the generalized form of Weber’s
law – which separates the source of variance into time-dependent and time-independent
components. Over the course of learning, both the time-independent variance and the
coefficient of the time-dependent term decrease. Our analyses also suggest that timing
of sequential events does not rely on the resetting of an internal timer at each event. We
describe and interpret our results in the context of computer simulations that capture some
of our psychophysical findings. Specifically, we show that continuous timing, as opposed
to “reset” timing, is consistent with “population clock” models in which timing emerges
from the internal dynamics of recurrent neural networks.
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INTRODUCTION
The nervous system processes and tracks time over a range of
at least 12 orders of magnitude: from our ability to discriminate
whether sounds arrive at our left or right ear first (microseconds),
to the governing of our circadian rhythms (hours and days). In
between these extremes, on the order of milliseconds and sec-
onds, lie what might be considered the most sophisticated forms
of timing: those that are required for complex sensory and motor
tasks, including speech, or music, perception, and production. It
is clear that, unlike the clocks on our wrists or walls that can be
used to track milliseconds or months, the brain uses fundamen-
tally different mechanisms to time across different scales (Lewis
et al., 2003; Mauk and Buonomano, 2004; Buhusi and Meck,
2005; Buonomano, 2007; Grondin, 2010). For example, the axonal
delay lines that contribute to sound localization (Jeffress, 1948;
Carr, 1993) have nothing to do with the transcription/translation
feedback loops that govern circadian rhythms (King and Taka-
hashi, 2000; Panda et al., 2002). Indeed, while significant progress
has been made toward understanding the mechanisms under-
lying timing in the extremes of biological temporal processes,
less progress has been made toward elucidating the mechanism,
or more likely mechanisms, underlying timing the in range of

hundreds of milliseconds to a few seconds. It is this range, with
particular attention to the motor domain, which will be the focus
of the current paper.

As in many other areas of sensory perception, Weber’s Law has
maintained a dominant presence in the field of temporal process-
ing. Specifically, that the SD of motor responses or the precision
of sensory discrimination varies linearly with absolute interval. In
other words, the coefficient of variation (CV, or Weber’s fraction),
defined as the SD over mean time, should be constant. This linear
relationship is often referred to as the scalar property (Gibbon,
1977).

There is excellent evidence that Weber’s law holds true over
certain time scales in some paradigms (Gibbon, 1977; Meck and
Church, 1987; Allan and Gibbon, 1991; Church et al., 1994; Hinton
and Rao, 2004; Jazayeri and Shadlen, 2010). However it is also clear
that, at least in its simplest form, Weber’s law does not universally
hold true. For example, Lewis and Miall (2009) recently reported
that in a time reproduction task over a range of 68 ms to 16 min
there was a progressive decrease in the CV; they concluded “this
finding joins other recent reports in demonstrating a systematic
violation of the scalar property in timing data.”Indeed, many stud-
ies have stressed that even within narrow time ranges both sensory
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(Getty, 1975; Hinton and Rao, 2004) and motor (Ivry and Hazel-
tine, 1995; Bizo et al., 2006; Merchant et al., 2008) timing violates
Weber’s law. However, these data seem to be well accounted for by
a generalized form of Weber’s law (Getty, 1975; Ivry and Hazeltine,
1995; Bizo et al., 2006; Merchant et al., 2008), in which the variance
increases as T 2 plus a time-independent (residual or noise) vari-
ance component. The time-dependent component of the variance
is often interpreted as reflecting the properties of some “internal
clock,” while the independent term is often viewed as reflecting
with motor variability. Few, if any, studies have explicitly quanti-
fied how these different components change with learning. Here
we show that both components change during learning.

Interestingly the majority of studies that have explicitly quanti-
fied the relationship between variance and time have done so using
independent intervals. That is, the variance of distinct intervals,
such as the production of 0.5, 1, and 2 s intervals, is analyzed in
separate trials. Here we use a spatiotemporal (or purely temporal)
pattern reproduction task, in which the accuracy and precision to
multiple consecutive responses within a pattern can be obtained
within the same trial. We first confirm that even within a fairly nar-
row range of a few seconds, the standard version of Weber’s law
(constant CV) is violated; however, the generalized version where
variance increases in proportion to T 2 captures the data well. Addi-
tionally, this task allowed us to address a specific question relating
to the timing of consecutive intervals. Consider a temporal task
such as pressing a sequence of keys on a piano at the appropri-
ate times. Does this task rely on timing all consecutive events in
relation to the sequence onset time (t = 0), or on resetting and
restarting an internal timer at each event – and thus essentially con-
sist of timing consecutive intervals in isolation? Based on expected
differences in the variability signature of consecutive responses we
conclude that the “internal timer” is not reset during each event.

Finally, based on a previously presented model, we demonstrate
how recurrent neural networks that do not exhibit any periodic
clock-like activity can generate complex spatiotemporal patterns.
The model is consistent with non-resetting timing mechanisms;
however, we also highlight the need for this and other models to
quantitatively account for the experimentally observed variance
characteristics.

MATERIALS AND METHODS
TASKS
The basic task used in this work resembles playing a melody on
a piano, by pressing the correct keys in the correct order and
target times. Two versions of the task were used: a spatiotempo-
ral pattern reproduction (STPR) task (Experiment 1), where the
subjects used four fingers to press the corresponding keys on a
computer keyboard; and a Temporal Pattern Reproduction (TPR)
task (Experiment 2) where the subjects used only one finger and
one key. In the STPR version, each of four rectangles on a computer
screen is assigned a corresponding computer key and finger: keys
F-D-S-A were assigned to fingers 2 (index) through 5 (pinky) of
the left hand. Subjects learned a spatiotemporal pattern consisting
of a sequence of key presses; the spatial component corresponds
to the order in which each key must be pressed, and the temporal
component to the time each key must be pressed in relation to
t = 0. Each trial consisted of an exposure component followed by

a training/testing component. The exposure component is similar
to a “temporal” serial reaction time task (Nissen and Bullemer,
1987; Shin and Ivry, 2002): the subject is instructed to press the
appropriate key in response to every flashed rectangle. Stimuli
were presented in“open-loop”mode, i.e., the events continue inde-
pendent of if and when the subject responds. After the exposure
component, the training/testing component begins with an onset
cue, and then the subject is required to reproduce the entire spa-
tiotemporal pattern on their own as accurately as possible; in this
phase the rectangles appear only if and when the subject presses
one of the four keys. The beginning of the pattern (t = 0) was ini-
tiated by the subject by pressing the space bar with the thumb. The
response time of each key press in relation to t = 0 is recorded to
calculate the variance, root-mean-square error (RMSE), and mean
of the response times for further analysis. Feedback on the train-
ing/testing component is provided at the end of each trial in the
form of a performance index, and an image of a “raster” that illus-
trates the target and produced patterns. In the TPR version of the
task only one key/finger was used to reproduce the entire pattern
(i.e., a purely temporal pattern with no spatial component). In this
task, in an attempt to minimize previous experience all subjects
used their pinky finger (left hand).

GENERAL PROCEDURE
During the test subjects sat in front of a computer monitor with
a keyboard in a quiet room. Stimulus presentation and behavioral
response collection were controlled by a personal computer using
custom-written code in Matlab and PsychToolBox. As the overall
performance measure to track learning we used the RMSE between
the response times and the target times.

WEBER’S GENERALIZED LAW
We fit the “Weber generalized law” (Eq. 1) to our data; and to pro-
vide a comparison we also performed fits using a related equation
with the same number of degrees of freedom where variance was a
linear function of T (Eq. 2; Ivry and Hazeltine, 1995). Specifically:

σ2 = k T 2 + σ2
indep (Generalized Weber’s law) (1)

σ2 = k T + σ2
indep (2)

where σ2 represents the total variance,σ2
indep the time-independent

variance, and k (in Eq. 1) approximates the square root of the con-
ventional Weber fraction at long intervals. Both equations predict
a decreasing CV as a function of absolute time T, although to
differing degrees.

SLOPE AND INTERCEPT OF THE GENERALIZED WEBER’S LAW
For every day and every subject classified as a learner (see Experi-
ment 1), we performed a linear regression between the variance of
each response time and the mean absolute response times squared
throughout the pattern. The fitted slope and intercept of the linear
regression were the estimates for the parameters k and σ2

indep in

the equation for the generalized Weber’s law above (Eq. 1).

RESET VERSUS CONTINUOUS TIMING
To examine the Reset versus Continuous timing hypotheses we fit
two different functions to the data. Consider the responses to a
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temporal pattern composed of six consecutive intervals t 1. . .t 6,
so that the absolute timing of each response is T 1. . .T 6, with
T 1 = t 1, T 2 = t 1 + t 2,. . .,T 6 = t 1 + t 2 + . . . + t 6. The Reset Tim-
ing hypothesis assumes that the variance at each response along the
pattern adds to the accumulated variance from previous responses,
so that the variance at any time T (coincident with a response)
along the pattern is

σ2
reset(T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k t 2
1 + σ2

indep if T = T1

k
(
t 2
1 + t 2

2

) + σ2
indep if T = T2

. . . . . .

k
(
t 2
1 + t 2

2 + . . . + t 2
6

) + σ2
indep if T = T6

where we conservatively assumed that the time-independent vari-
ance σ2

indep adds only once (i.e., a “weak” form of resetting; we

also tested a “strong” form of resetting, where the constant term
σ2

indep is added at every event as well, with poorer results). On

the other hand, the Continuous Timing hypothesis assumes that
all responses within a pattern are timed in absolute time T with
respect to the beginning of the pattern, and thus the variance at
any time T in the pattern is simply σ2

cont(T ) = k T 2 + σ2
indep, in

other words continuous timing predicts that the variance should
obey Weber’s generalized law. For instance, at the last response
(time T 6), the Continuous timing yields σ2

cont = k T 2
6 + σ2

indep =
k(t1 + t2 + . . . + t6)

2 + σ2
indep. We found that in some cases

the fitting with the Reset model yielded negative values for the
time-independent variance, a non-meaningful value; therefore the
fitting procedure was constrained so that this parameter was pos-
itive. No constraint was needed when fitting with the Continuous
model.

EXPERIMENT 1: LEARNING AND THE GENERALIZED WEBER
Participants
Subjects were 12 undergraduate students from the UCLA commu-
nity who were between the ages of 18 and 21. Subjects were paid
for their participation. All experiments were run in accordance
with the University of California Human Subjects Guidelines.

Procedure
Subjects were trained on the STPR task for three consecutive days,
in four blocks of 20 trials per day (about 30 min). Each subject
was trained on one target pattern. Each target pattern was gen-
erated from a random sequence of six key presses (four possible
keys), separated by six random intervals between 200 and 800 ms
(each target pattern was used for two subjects). The key sequence
was constrained to ensure that consecutive key presses were never
assigned to the same finger, and all fingers were used at least once.

Analysis
The CV was calculated as the ratio between the SD and the mean of
the response times for each response of the pattern, for every day
and every subject. To test the hypothesis that the CV is not con-
stant, we performed a linear regression between the CV and the
mean response time and then averaged the slopes across subjects.
To eliminate potential outliers we discarded the top and bottom
2% of the response times of each interval from a given subject on
a given day.

Learning
Since one goal of this experiment was to characterize changes
in the time-dependent and independent variance with learning,
we classified each subject as a learner if his/her learning curve
complied with the following two conditions: 1. a significantly
negative slope (p < 0.001); 2. a significant improvement in per-
formance (RMSE) between the first and last blocks (one-tailed
Student-t -test, p < 0.01). Four out of 12 subjects were classified as
non-learners, and removed from learning analysis.

EXPERIMENT 2: CONTINUOUS VERSUS RESET TIMING
Participants
Subjects were 10 undergraduate students from the UCLA commu-
nity between the ages of 18 and 21 paid for their participation.

Procedure
Subjects were trained on the TPR task for five consecutive days,
in eight blocks of 20 trials per day (about 45 min). Each subject
was trained on a periodic and “complex” pattern. Again, each pat-
tern consisted of six intervals. In the periodic pattern, the interval
between consecutive events was always 500 ms; for each complex
target pattern, intervals were randomly chosen from a uniform
distribution between 200 and 800 ms. The presentation order of
the two types of targets (periodic versus complex) was counter-
balanced between subjects. To remove potential outliers in the
response times we eliminated the top and bottom 4% of the
responses.

POPULATION CLOCK MODEL AND NUMERICAL SIMULATIONS
Network model
The model used the general random recurrent network model
composed of firing-rate (non-spiking) units (Sompolinsky et al.,
1988; Jaeger and Haas, 2004; Sussillo and Abbott, 2009). The
network was composed of N = 1800 recurrent units, three input
units, and four output units (see Figure 6A); the recurrent con-
nectivity is represented by a sparse N × N matrix W; non-zero
elements in W are drawn independently from a Gaussian distrib-
ution with zero mean and variance = g 2/(p·N ), where g = 1.35 is
the synaptic strength factor, and p = 0.1 is the connection proba-
bility. The activity of each recurrent unit is represented by variable
x i (vector notation: x ≡ {xi}), whose dynamics is governed by a
firing-rate model with a time constant τ = 10 ms. Network-to-
output connectivity is represented by an all-to-all 4 × N matrix
Wout, (the only connections subject to training), with values ini-
tially drawn from a Gaussian distribution with zero mean and
variance 1/N ; output units z i are linear readouts of the activity
of the network: z = Woutx, where r = tanh(x) are the firing rates.
Output-to-network feedback connectivity (N × 4 matrix Wfb) is
all-to-all, with matrix elements drawn from a uniform distribution
between −1 and 1. Input-to-network connectivity (N × 3 matrix
Win) is all-to-all, with matrix elements drawn from a Gaussian
distribution with zero mean and variance 1; input units are repre-
sented by variables y i with no autonomous dynamics other than
externally imposed by the experimenter; input baseline is zero,
input pulses have duration 100 ms and height 2. All recurrent units
have a noise input current with amplitude = 0.01. The equations
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governing the time evolution of the network were:

τ
dx

dt
= −x + W r + Win y + Wfb z + Inoise

r = tanh(x)

z = Wout r

Learning algorithm
Training was performed with the FORCE learning rule (Sussillo
and Abbott, 2009), applied to the output connectivity Wout. Target
functions were flat with a Gaussian-like peak (half width of 50 ms)
at the target times, the baseline was 0.15 with a peak amplitude
of 1. The inputs corresponded to a brief 100 ms pulse starting at
t = 0 ms. After training, activation of the input units elicited the
corresponding output pattern.

RESULTS
EXPERIMENT 1: TIMING OF CONSECUTIVE RESPONSES DOES NOT
FOLLOW WEBER’S LAW
Most studies on timing and Weber’s law have focused on isolated
intervals rather than multiple time points within a pattern. Here
we used a STPR task in which subjects were required to reproduce
a spatiotemporal pattern, and thus generate a response at mul-
tiple time points within a single trial. Each subject was trained
on a single target pattern for three consecutive days. A sample
outcome of the task for a single subject (Day 3) is displayed in
Figure 1A.

Our first observation is that the scalar property – the basic form
of Weber’s law – is violated when subjects are timing spatiotem-
poral patterns. That is, the SD of the response time along the
spatiotemporal pattern is not proportional to the mean response
time, as demonstrated by plotting the normalized fits to the

FIGURE 1 | Spatiotemporal Pattern Reproduction task data.

(A) Top panel: Distribution of response times for each key press
(dotted lines), with Gaussian fits (solid lines), for a complex pattern
from one subject; Bottom panel: the target pattern. Colors cyan, blue, red,
and green, correspond to fingers 2 (index) through 5 (pinky). A systematic
anticipation is noticeable at the longer responses in this subject. Although
some subjects tended to produce early responses and others late, across
subjects there was a tendency to anticipate the target time, particularly at the
last responses in the pattern. On the last day of training the difference
between the response time and target time at the first element in the pattern
was (mean ± SD) 25 ± 75 ms (p = 0.26), whereas for the last element it was

−230 ± 320 ms (p = 0.03). The spatial error rate (trials with incorrect finger
presses) decreased rapidly over the first few blocks: in the first block, on
average, 33% of the trials had a spatial error; this fell to 8% in the second
block, and 0.9% by the last block (12). (B) Overlaid normalized Gaussian fits
from (A). Each distribution has the x axis divided by its mean and their y
values divided by their peak value. Dotted lines correspond to the second
response of a given finger. (C) Weber fraction (=coefficient of variation) as a
function of mean response time. Same subject, all 3 days. Vertical dotted lines
indicate the target times. (D) Variance as a function of mean response time
squared (dashed lines), and linear fits according to the generalized Weber’s
law (Eq. 1, solid lines).

Frontiers in Integrative Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 61 | 4

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Laje et al. Learning of temporal motor patterns

response distributions of the consecutive responses (Figure 1B).
Figure 1C plots the CV of each response as a function of its time
in the pattern for the same subject on each day, revealing a clear
decrease in CV over time. Across the 12 subjects, on any given
day, there was a significant decrease in the CV as revealed by a
significant negative slope in relation to absolute time for all 3 days
(p < 0.007).

This result indicates that the standard version of Weber’s law
does not account for the changes in precision as a function of
absolute time. The generalized version of Weber’s law (see Mate-
rials and Methods), however, robustly captured the relationship
between precision and time of the response (Figure 1D). To pro-
vide a direct comparison for the generalized Weber fit, we also fit
an equation where variance changes linearly with T instead of T 2

(see Materials and Methods; Ivry and Hazeltine, 1995). Although
both fits were quite good, the goodness of fit using Weber’s general-
ized law, as measured by the determination coefficient R2 between
the fit and the data, was significantly better (mean R2 of 0.907
and 0.867, respectively; p = 0.0002 two-tailed paired t -test after
Fisher transformation). It is also worth noting that for all 3 days
the residuals were significantly smaller with the generalized Weber
fit compared to a standard Weber fit (p < 0.001).

To the best of our knowledge these results are the first to
show that “standard” Weber’s law does not hold for the timing
of consecutively produced intervals. Yet, this result is consistent
with previous results demonstrating violations in Weber’s law
for individual intervals (Getty, 1975; Ivry and Hazeltine, 1995;
Merchant et al., 2008; Lewis and Miall, 2009).

LEARNING ALTERS BOTH SOURCES OF VARIANCE
Because timing in the STPR task was well accounted for by
the generalized Weber’s law, we next examined how learn-
ing affected the time-dependent and time-independent variance
sources. Figure 2A shows the learning curves for each of the 12
subjects across 3 days (four blocks of 20 trials each day). We defined
performance as the error (RMS) between the response time and
target times of each event. Learning of spatiotemporal patterns was
observed for 8 out of the 12 subjects (see Materials and Methods).

In order to determine how, and if, the parameters k and σ2
indep

change with learning we fit Weber’s generalized law to the data of
each of the learners on each of the 3-days of training. We found
that slope k and intercept σ2

indep both changed with learning (one-

way, repeated-measures ANOVA; k: F 2,6 = 6.04, p = 0.013; σ2
indep:

F 2,6 = 6.29, p = 0.011).

EXPERIMENT 2: RESETTING VERSUS CONTINUOUS TIMING
An important question regarding the timing of patterns in which
multiple responses are produced within a trial, is whether the
internal timer is reset or not at each new interval during the
production of the pattern. To examine this issue we trained 10
subjects in the TPR task (i.e., a purely temporal version of the
previous task) in which every subject had to learn two different
patterns: one periodic (six consecutive, equal intervals of 500 ms)
and the other complex (a non-periodic pattern composed of six
consecutive random intervals in the range 200–800 ms). The use of
a purely temporal task as opposed to the spatiotemporal task used

FIGURE 2 | Learning in the spatiotemporal pattern reproduction task.

(A) Learning curves. Performance of all subjects over 3 days of training.
RMSE: root-mean-square error between response times and target times,
averaged in blocks of 20 trials. Statistically significant learners are in black,
non-learners in gray. Some subjects classified as non-learners had very low
RMSE values, but did not exhibit any significant improvement in
performance from the first to last block, and were thus classified as
“non-learners” (see Materials and Methods). (B) Mean slope k and mean
intercept σ2

indepacross the 3-days of training. Error bars represent the SEM.
There was a significant decrease in both k and σ2

indep across training days
(p = 0.013 and 0.011, respectively).

in Experiment 1 was important to rule out any potential variance
generated by the spatial component (i.e., switching fingers).

The two contrasting hypotheses we tested are depicted in
Figure 3. Under “Reset Timing” the timing of consecutive inter-
vals is done independently, and thus the variance of the response
time at each next event in the pattern adds to the accumulated
variance from the previous responses (based on the result above,
and those of others, we are assuming that the timing of any given
interval is governed by Weber’s generalized law). In the case of a
perfectly periodic pattern, this leads to a characteristic sublinear
behavior when plotting the variance versus a time squared hori-
zontal axis; for a complex pattern, in the reset mode the variance
depends on the particular intervals of a pattern (see Materials and
Methods for details). On the contrary, under “Continuous Tim-
ing,” for either periodic or complex patterns, the temporal pattern
is processed in absolute time from its onset. Thus the variance
at every event when timed from the onset of the pattern should
follow the generalized form of Weber’s law, that is a straight line
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in a variance × time squared plot. These two qualitatively differ-
ent behaviors of the variance can be tested by comparing the fit
of the two models to the experimental data. We examined tim-
ing in both a periodic and complex task because we hypothesized
that reset timing might be more likely to be used during periodic
patterns.

In Figure 4A we show the experimental data from one sub-
ject after fitting the reset and continuous equations. The predicted
variance under the Resetting hypothesis is decelerating, a trait
not observed in the experimental data. The Continuous timing
fit appears to better account for the variance in both the peri-
odic and the complex pattern. To quantify this, we performed a
repeated-measures two-way ANOVA with factors Model (Con-
tinuous versus Reset) and Training Day (1 through 5) on the
Pearson correlation coefficient R (Fisher-transformed) between
each model’s prediction and the experimental data (see Materials

and Methods). The difference between Continuous and Reset
models was significant for both the periodic and the complex
patterns, with the Continuous producing a better fit than the
Reset (periodic: mean R2 = 0.934 for the Continuous, mean
R2 = 0.876 for the Reset, F 1,9 = 49.9, p < 10−4; complex: mean
R2 = 0.891 for the Continuous, mean R2 = 0.859 for the Reset,
F 1,9 = 11.2, p = 0.009; Figure 4B). There was no effect of training
(periodic: F 4,36 = 1.2, p = 0.31; complex: F 4,36 = 1.0, p = 0.41) or
interaction (periodic: F 4,36 = 1.3, p = 0.28; complex: F 4,36 = 0.4,
p = 0.78), suggesting that the quality of the fits did not change
with training.

We also performed this same analysis with the spatiotempo-
ral data in Experiments 1, with similar results. The Continuous
model produced significantly better fits than the Reset model
(mean R2 = 0.907 and 0.869, respectively; p = 0.01). This result
suggests that the mechanism for timing consecutive intervals in

FIGURE 3 | Reset versus continuous timing. Timing of a temporal pattern
(thick black line) could be achieved by timing every interval t n in isolation and
resetting the timer at each response (Reset timing), or by timing continuously
in absolute time T since the beginning of the pattern (Continuous timing). The

predicted variance at every point in the sequence is different, since in Reset
timing the variance at each new response adds to the previous variance,
whereas in Continuous timing the variance is a function of absolute time
squared (note that T 3 = t 1 + t 2 + t 3).

FIGURE 4 |The psychophysical data is best fit by continuous timing. (A)

Example of fits for Reset and Continuous timing from one subject: variance as
a function of mean response time squared. Left column: periodic pattern;

right column: complex pattern. Top row: training day 1; bottom row: training
day 5. (B) Goodness of fit for Reset and Continuous: average R2 after Fisher
transformation with SE bars. (**) p < 0.0001, (*) p = 0.009.
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a sequence does not change because of the presence of a spatial
component. And interestingly, contrary to our expectations there
is no significant difference between the quality of the Continuous
for the temporal and spatiotemporal tasks (p = 0.61). Additionally,
we verified that as in Experiment 1, the variance data was best fit
by the generalized Weber equation. For the periodic patterns, the
mean R2 was 0.934 and 0.878 for the generalized Weber (Eq. 1)
and linear with T equation (Eq. 2), respectively (p < 10−5). For the
complex patterns, the same mean R2 values were 0.891 and 0.854
(p = 10−4). The learning analysis for the data from Experiment
2 showed a very similar decreasing behavior of k and σ2

indep as a

function of training day, for both the periodic and the complex
patterns.

FIGURE 5 | Variance is smaller for periodic patterns. Mean variance at
each response for the first and last days of training. Although both periodic
and complex patterns had the same total duration (3 s), the variance of the
response times at the last response is smaller for the periodic pattern.

Although these results suggest the Reset Timing should be
rejected for both the periodic and the complex patterns and both
the spatiotemporal and purely temporal tasks, it is interesting to
note that the variance of the responses were consistently smaller
for the periodic patterns (Figure 5). For example, although the tar-
get time of the last event of both the periodic and complex patterns
was the same for all subjects and patterns (3 s), the variance was
approximately double in the complex condition (both on Day 1
and 5). These observations suggest different modes or mechanisms
of timing in the periodic and complex tasks (see Discussion).

MODEL: POPULATION CLOCK BASED ON RECURRENT NETWORK
DYNAMICS CAN REPRODUCE TIMED PATTERNS
A number of previous models have proposed that the brain’s ability
to tell time derives from the properties of neural oscillators oper-
ating in a clock-like fashion, through accumulation/integration of
pulses emitted by a pacemaker. However, few studies have pro-
posed detailed explanations of how these models account for the
generation of multiple complex spatiotemporal patterns of the
type studied in Experiment 1.

An alternate hypothesis to clock models suggest that timing
emerges from the internal dynamics of recurrently connected
neural networks, and that time is inherently encoded in the evolv-
ing activity pattern of the network – a population clock (Buono-
mano and Mauk,1994; Buonomano and Laje,2010). Here we focus
on a population clock model that is well suited to account for the
timing of complex spatiotemporal patterns, and is consistent with
the results presented above suggesting that timing of patterns does
not rely on a reset strategy. Since our psychophysical results above
show that both spatiotemporal and temporal patterns are better
accounted for by Continuous timing, in this section we focused on
the more general problem of spatiotemporal pattern generation.

We implemented a population clock model in the form of a
firing-rate recurrent neural network model (Buonomano and Laje,

FIGURE 6 | Population clock model based on recurrent

network dynamics. (A) Network architecture. The four output
units are meant to represent the four fingers. Only the readout connections
(depicted in red) are subject to training. (B) Reproduction of two complex
spatiotemporal patterns (each with three different runs overlaid) after
adjusting the weights of the recurrent units onto the readout units. Output

traces are shifted vertically for visual clarity. Each pattern is triggered by a brief
activation (100 ms) of the corresponding input unit at t = 0 (black thick trace,
Pattern 1; gray thick trace, Pattern 2). The dashed black trace represents a
(third) constant input to the recurrent network. Colored rasters represent a
subset (20) of the recurrent units. In these units activity ranges from −1 (blue)
to 1 (red).
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2010). The network, displayed in Figure 6A, is composed of 1800
sparsely connected units, each with a time constant of 10 ms (see
Materials and Methods). As shown in Figure 6B, a brief input can
trigger a complex spatiotemporal pattern of activity within the
recurrent network; and this pattern can be used to generate mul-
tiple, complex spatiotemporal output patterns several seconds in
duration. Different output patterns can be triggered by different
brief input stimuli. The results shown are from a network with
three inputs and four outputs (each output represents a finger).
Input 1 (tonic) sets the network outputs in a state of low-level
activity, while Inputs 2 and 3 (pulsed) act as “go” signals for pat-
terns 1 and 2, respectively. The four output units feedback to the
network, and the corresponding four sets of output weights are
subject to training with the FORCE learning algorithm (Sussillo
and Abbott, 2009). The network is trained to reproduce the desired
target pattern every time the corresponding ”go”signal is activated.
In this scenario learning takes place by adjusting the weights on
to the readout units. To simulate the responses used in our STPR
task (discrete, pulse-like finger movements) the target response
is simulated as a smooth but rapidly ascending and descending
waveform.

Our numerical simulations reveal that the variance signature
exhibited by the model is strongly dependent on the parameters
of the model (including the synaptic strength factor g, and the
strength of the feedback, see Rajan et al., 2010). In the simula-
tion presented here on average variance increased approximately
linearly with T 2 (with a large degree of variation between simu-
lations). However, variance values were much smaller than those
observed experimentally: a Weber fraction of around 1% (com-
pare with the experimental Weber fraction on the order of 10–30%
in Figure 1C). It is well known that the dynamics of recurrent
networks is highly complex and prone to chaotic activity (Som-
polinsky et al., 1988; Jaeger and Haas, 2004; Rajan et al., 2010),
while outside the scope of the current study it is clear that it will be
necessary to better understand the dynamics of these systems to
determine if they can quantitatively account for the experimentally
observed variance signature (see Discussion).

Qualitatively the population clock framework shown in
Figure 6 elegantly accounts for both the spatial and temporal
aspects of complex spatiotemporal patterns. That is, the spatial
pattern, the timing, and the order of the fingers are all encoded
in a multiplexed fashion in the recurrent network plus the read-
out. Furthermore, the model is most consistent with “continuous”
timing, and thus with the experimental data. Specifically, while
a feedback loop from the output units to the recurrent network
could be used to implement reset timing, such a reset signal would
necessarily bring the network to the same state every time that
finger was used during a pattern. Consider the production of an
aperiodic temporal pattern, and now suppose that the output pulse
“resets” the network state through the feedback loop. Resetting to
the same state would trigger the same neural trajectory, making
the same output fire again leading to a periodic loop. Although the
same motor response can be triggered by many different internal
states (a many-to-one mapping), every time that motor response
is generated it would erase the previous history of the recurrent
network through the reset command. However, a reset strategy
could potentially be implemented if additional assumptions were

incorporated, such as buffers that kept track of the ordinal posi-
tion of each response. Lastly it should be pointed out that, since
recurrent networks seem to exhibit a range of different variance
signatures depending on model parameters, it is theoretically pos-
sible that in some regimes the model could emulate a reset timing
variance signature without actually being reset.

DISCUSSION
WEBER VERSUS GENERALIZED WEBER
The great majority of timing studies that have quantified changes
in temporal precision as a function of the interval being timed
have examined each interval independently – that is, timing of 500
and 1000 ms intervals would be obtained on separate trials (for
reviews see, Gibbon et al., 1997; Ivry and Spencer, 2004; Mauk
and Buonomano, 2004; Buhusi and Meck, 2005; Grondin, 2010).
Here we examined scaling of temporal precision during a sequen-
tial reproduction task in which subjects were required to time
different absolute temporal intervals within the same trials. Con-
sistent with a number of previous studies (Getty, 1975; Ivry and
Hazeltine, 1995; Hinton and Rao, 2004; Bizo et al., 2006; Merchant
et al., 2008; Lewis and Miall, 2009), we established that in consec-
utive timing, precision also does not follow the standard version
of Weber’s law; in other words, the Weber fraction calculated as
the CV decreased with increasing intervals (Figure 1).

Consistent, again, with a number of previous studies we found
that the variance of consecutively timed motor responses were well
accounted for by the generalized version of Weber’s law – specif-
ically, that variance increases with absolute time squared (Getty,
1975; Ivry and Hazeltine, 1995; Bizo et al., 2006; Merchant et al.,
2008). Weber’s law is, of course, a specific instance of the general-
ized law in which the intercept (the time-independent variance) is
equal to zero. Thus previous results conforming to Weber’s law are
likely to represent instances in which the non-temporal variance is
relatively small compared to the temporal variance. Indeed, most
of the studies supporting Weber’s law have not explicitly examined
whether the reported data would not be significantly better fit by
Weber’s generalized law.

EFFECTS OF LEARNING
The fact that the data was very well fit by Weber’s generalized
law allowed us to ask whether learning of spatiotemporal patterns
altered the time-dependent and/or independent sources of vari-
ance. Traditionally, the time-dependent portion of the variance is
interpreted as reflecting the properties of a clock or timing device.
The time-independent variance is often taken to reflect the noise
in the motor response or “internal” noise that non-specifically
alters sensory and/or motor aspects of any psychophysical task. It
is not immediately clear which of the potential sources of variance
would be expected to underlie the improved performance that
occurs with practice. We observed that both σ2

indep and the slope k

(which approximates the traditional Weber fraction at long inter-
vals) change over the course of learning (Figure 2). Visually, σ2

indep
seemed to change and asymptote more rapidly thank k (Figure 2),
this was not statistically significant however. Nevertheless, in future
experiments it will be of interest to determine if both sources of
variance can change independently during learning. We interpret
σ2

indep as reflecting an amalgam of internal noise sources including

Frontiers in Integrative Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 61 | 8

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Laje et al. Learning of temporal motor patterns

both motor and attentional factors, and speculate that some of the
improvements in σ2

indep are likely to reflect attentional components

that would generalize across different temporal patterns.
As mentioned, the coefficient k of the time-dependent term is

often interpreted as reflecting the property of an internal clock;
more specifically, as capturing the variation in the generation of
pulses of a hypothetical pacemaker. Within this framework one
might interpret the improvement in k as a decrease in the variabil-
ity of a pacemaker. We have previously argued that motor (and
sensory) timing does not rely on an internal clock, but rather as
exemplified in Figure 6, on the dynamics of recurrently connected
neural networks (Mauk and Buonomano, 2004; Buonomano and
Laje,2010). Within this framework we would interpret the decrease
in k as reflecting less cross-trial variability in the neural trajectory
(see below). However, it remains far from clear what the decrease
in k truly reflects at the neural level.

RESET VERSUS CONTINUOUS TIMING
The use of consecutively timed responses during the STPR task, as
opposed to the timing of independent intervals, raises an impor-
tant question: when timing multiple consecutive intervals does
the internal timer – whatever its nature – operate continuously
throughout the entire pattern, or does it “reset” at each event
(Figure 3)? To use a stopwatch analogy, if you need to time two
consecutive intervals, one of 1 s and the second of 1.5 s, do you
start a stopwatch at t = 0 ms, generate a response at 1 s, then wait
until it hits 2.5 s and generate another, or do you reset/restart the
stopwatch at 1 s, and generate a second response at 1.5 s?

This question relates to previous studies that have examined
the effects of subdividing on timing. Specifically, to generate a
multi-second response, it is typically reported that “counting”
(which generates subintervals), improves precision (Fetterman
and Killeen, 1990; Hinton and Rao, 2004; Hinton et al., 2004;
Grondin and Killeen, 2009). One interpretation of this result is
that since timing precision increases as a function of absolute time
squared T 2, total variance is less if the total interval T is subdi-
vided into t 1 + t 2, because k t 2

1 + k t 2
2 < k(t1 + t2)

2. In other
words, counting may be superior because in essence the internal
timer is being reset during each subinterval.

To address the question of whether the internal timer is reset
during a pattern we examined whether temporal precision is best
fit by continuous or reset assumptions during the reproduction of
both periodic and complex temporal patterns. Our results reveal
that both fits were actually pretty good (R2 > 0.86), and that the
difference between both models can be surprisingly subtle and
potentially easily missed. Nevertheless, our findings clearly indi-
cate that for both periodic and complex stimuli the fits using
the continuous model produced significantly smaller residuals.
These results suggest that the neural mechanisms underlying tim-
ing appear to accumulate variance over the course of a pattern
in a manner consistent with continuous operation of a timing
device. We initially expected that there may be a difference between
periodic and complex patterns, specifically, that precision during
periodic patterns would more likely be consistent with a reset
mechanism. However, this expectation was not supported, as the
continuous fits were significantly better for both the periodic and
complex patterns.

Nevertheless, consistent with studies showing that counting,
and thus presumably periodic subdividing, improves perfor-
mance, we did observe a significant decrease in total variance of
the last event, which was the same for the periodic and complex
patterns (3 s). Interestingly there was also difference for the first
event between both tasks (500 ms in the periodic patterns, and on
average 598 ms in the complex patterns; Figure 5). It is noteworthy
that by the end of training, the absolute precision of a few subjects
was comparable in the periodic and complex tasks, raising the pos-
sibility that comparable precision can be achieved in periodic and
complex patterns.

These results raise somewhat of a conundrum: timing of a 3-s
response is indeed better if the previous five responses were equally
spaced compared to an aperiodic pattern; however, the improve-
ment does not appear to be a result of resetting during the periodic
task. Are different circuits responsible for the periodic and com-
plex timing? Is periodic timing less flexible, thus allowing for better
precision? We cannot speak directly to these questions here; how-
ever, in the sensory domain it has been suggested that there may
be different neural circuits for periodic and non-periodic timing
(Grube et al., 2010; Teki et al., 2011). Still, it remains a possi-
bility that given the relatively small, but significant, difference in
the quality of the fits between the reset and continuous timing
equations, we were not able to pick out subtle differences between
them. It is also possible that, since our subjects were reproducing
both patterns in alternation, they were nudged toward using simi-
lar “continuous” strategies. Finally, less precise timing in complex
conditions might simply reflect non-specific factors relating to the
task requirements, e.g., increase attentional and memory load.

MODELS OF TIMING
A critical challenge to any model of timing is to provide a mecha-
nistic description of its postulated underpinning in biologically
plausible terms. A number of models have proposed that the
brain’s ability to tell time derives from the properties of neural
oscillators operating in a clock-like fashion, yielding an explicit,
linear metric of time (Creelman, 1962; Treisman, 1963). Others
have proposed a population of neural elements oscillating at dif-
ferent frequencies, with a readout mechanism that detects specific
beats or coincidental activity at specific points in time (Miall, 1989;
Matell and Meck, 2004). Still others propose that time might be
directly encoded in the activity of neural elements with differ-
ing time constants of some cellular or synaptic property (for a
review see, Mauk and Buonomano, 2004). As a general rule, many
models of timing have focused primarily on the timing of sin-
gle isolated intervals, as opposed to the generation of multiple
complex spatiotemporal patterns as examined here. Indeed, it is
not immediately clear how the clock models based on the inte-
gration of events from a pacemaker can account for generating
different temporal patterns in a flexible fashion. For this reason,
here we have focused on network models, which in our opinion
can elegantly capture the spatial, timing, and order components
of complex motor tasks.

In addition to being implemented at the levels of neurons, any
model must of course also account for the behavioral and psy-
chophysical data. Indeed, one of the strengths of psychophysical
studies is to test and constrain mechanistic models of timing. The
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neural mechanism of timing remains debated, but it is increasingly
clear that there are likely multiple areas involved, and that different
neural mechanisms may underlie timing on the scale of millisec-
onds and seconds (for reviews see, Buonomano and Karmarkar,
2002; Mauk and Buonomano, 2004; Buhusi and Meck, 2005; Ivry
and Schlerf, 2008; van Wassenhove, 2009; Grondin, 2010). One
biologically based model of timing suggests that dynamic changes
in the population of active neurons encode time. This model, first
proposed in the context of the cerebellum (Buonomano and Mauk,
1994; Mauk and Donegan, 1997; Medina et al., 2000), and later in
recurrent excitatory circuits (Buonomano and Merzenich, 1995;
Buonomano and Laje, 2010) has been referred to as a population
clock (Buonomano and Karmarkar, 2002). In the motor domain,
any time-varying neural activity requires either continuous input
or internally generated changes in network state. This class of
models is most consistent with Continuous timing (see Results).
Specifically, since timing relies on setting a particular neural tra-
jectory in motion, different points in time (as well as the ordinal
position and the appropriate finger) are coded in relation to the
initial state at t = 0 (Figure 6) – resetting the network, in contrast,
can erase information about ordinal position and finger pattern
embedded in the recurrent network.

In vivo electrophysiological studies have lent support to the
notion of a population clock, including reports of neurons that
fire at select time intervals or in a complex aperiodic manner
(Hahnloser et al., 2002; Matell et al., 2003; Jin et al., 2009; Long
et al., 2010; Itskov et al., 2011). In the experimental and theo-
retical studies the temporal code of a population clock can take
various forms: First, time might be encoded in a feed-forward
chain, where each neuron essentially responds at one time point
(Hahnloser et al., 2002; Buonomano, 2005; Liu and Buonomano,
2009; Fiete et al., 2010; Long et al., 2010; Itskov et al., 2011);
Second, the code can be high dimensional, where at one point

in time is encoded in the active population response of many
neurons, and each neuron can fire at multiple time points (Med-
ina and Mauk, 1999; Medina et al., 2000; Lebedev et al., 2008;
Jin et al., 2009; Buonomano and Laje, 2010). Indeed, some of
these studies have shown that a linear classifier (readout unit)
can be used to decode time based on the profiles of the experi-
mentally recorded neurons, thus effectively implementing a pop-
ulation clock (Lebedev et al., 2008; Jin et al., 2009; Crowe et al.,
2010).

While experimental data showing that different neurons or
populations of neurons respond at different points in time sup-
ports the notion that time is encoded in the dynamics of neural
network – in the neural trajectories – at the theoretical level it has
been challenging to generate recurrent excitatory networks capa-
ble of producing reliable (“non-chaotic”) patterns. While recent
progress has been made in both physiological learning rules that
may account for the formation of neural trajectories (Buonomano,
2005; Liu and Buonomano, 2009; Fiete et al., 2010) and the circuit
architecture that might support them (Jaeger and Haas, 2004; Sus-
sillo and Abbott, 2009; Itskov et al., 2011), these models have not
explicitly captured the variance characteristics (Weber’s general-
ized law) observed psychophysically. This holds true for the model
presented in Figure 6 (which tends to exhibit very little variance;
or, as the noise is increased, variance that scales too rapidly). Thus,
while this class of models is consistent with the notion that the
internal timer does not reset during the production of patterns,
future models must accurately capture the known relationship
between precision and absolute time.
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