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Timing and temporal processing in the range of tens and hundreds of 
milliseconds is critical for many forms of sensory and motor process-
ing, but the neural mechanisms underlying the ability to discriminate 
or produce short intervals remain unknown1,2. Recent studies have 
lent support to the notion that timing is an inherent computational 
ability of cortical circuits and may be performed locally2. This view 
implies that the temporal structure of the internal dynamics of cor-
tical networks should be shaped by the temporal patterns that the 
network experiences. To examine this issue, we studied the effects of 

the presentation of simple spatiotemporal stimulus patterns on corti-
cal neural dynamics using organotypic slices. As with in vivo corti-
cal networks, evoked stimulation in organotypic networks can elicit  
complex polysynaptic responses that reflect local network dynamics. 
This preparation is therefore well suited to study the plasticity of  
neural dynamics.

External stimulation was presented to cortical cultures via two 
implanted bipolar stimulating electrodes3. We first examined whether 
the temporal pattern of stimulation produced any form of network 
plasticity, defined as changes in evoked patterns of activity. The 
implanted electrodes (E1 and E2) were activated with a burst of pulses 
presented in-phase (synchronously) or with a 100-ms interval (onset 
to onset), every 10 s for 2 h (see Fig. 1a and Supplementary Fig. 1). 
Given the large degree of variability in the presence and structure of 
polysynaptic activity in naive slices, all of the presented data is derived 
from paired experiments in which ‘sister’ slices were trained with 
one of two protocols and compared4. After training in the incubator 
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Figure 1 Network dynamics is differentially modified by training.  
(a) After 2 h of training with either an in-phase or 100-ms pattern (right), 
far pathway responses (E1→N2 in blue, and E2→N1 in red; left panel) 
were examined. (b,c) Voltagegrams of E1→N2 (left) and E2→N1 (right) 
traces in response to a single test pulse (time indicated by arrow) for 
slices trained with the in-phase (n = 8 neurons each pathway, 5 traces  
per neuron, data from 8 slices, b) or 100-ms interval pattern (11 neurons, 
each from a different slice for E1→N2 pathway, n = 9 neurons for  
E2→N1 pathway, 5 traces per neuron; N1 neurons were not recorded 
in two of the slices, c). Voltagegram traces are normalized and sorted 
according to latency of the first polysynaptic peak (that is, the first 
peak after the monosynaptic response). Voltage is represented in color 
where blue is the minimum and red is the maximum. The traces above 
each voltagegram are the mean of all traces (shading represents the 
s.e.m.). Arrows represent the time of the test stimulus and dashed lines 
are presented for comparison across panels. (d) After 100-ms training, 
76% of all test traces and 95% of tested neurons exhibited one or more 
polysynaptic peaks versus 51% of traces and 69% of neurons for the  
in-phase group (traces, χ2 = 11.98, P < 0.001; neurons, χ2 = 4.41,  
P < 0.05). (e) Mean ± s.e.m. (shading) of waveform in response to far 
pathways after in-phase or 100-ms interval training. Note the secondary 
peak in the E1→N2 waveform after 100-ms interval training (arrow), 
which is lacking in the other traces.
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for 2 h, whole-cell recordings were performed from neurons near 
each electrode (N1 and N2 refer to neurons close to electrodes E1 
and E2, respectively) and the postsynaptic potential (PSP) wave-
form in response to a single pulse from the ‘far’ (E2→N1 or E1→N2 
responses) pathways was examined. As described previously, in addi-
tion to the short-latency monosynaptic PSP, complex polysynaptic 
PSP waveforms were often observed5,6. As these late PSPs provide a 
measure of the population activity of the neurons that synapse onto 
the recorded cell, we used the temporal profile of the voltage traces 
as a measure of the temporal pattern of network activity.

After a 2-h training session, examination of the PSPs evoked by a 
single test pulse from either electrode revealed that the 100-ms group 
exhibited a significantly larger number of test traces with one or more 
polysynaptic events (χ2 = 11.98, P < 0.001, analysis collapsed across 
pathways; Fig. 1, see Supplementary Methods). Thus, in response to 
a single pulse there was a significant difference in the behavior of the 
network between the in-phase and 100-ms groups. In the in-phase 
group, as expected, the average of all E1→N2 and E2→N1 traces was 
very similar. In the 100-ms group, however, there appeared to be a 
difference between the E1→N2 and E2→N1 traces; specifically, even 
when collapsed across all cells, the E1→N2 trace exhibited a small sec-
ondary peak at approximately 100 ms (Fig. 1e). This observation was 
consistent with the notion that the timing of network activity reflected 
the interval used during training. Although these patterns are highly 
variable, any preferential increase in activity around the expected time 
of the second pulse could be interpreted as a type of pattern com-
pletion; that is, after E1 stimulation, the neurons near E2 exhibited 
increased activity around the interval used during training.

To examine the effect of the training interval on the timing of 
network dynamics, we performed experiments in which two groups 
were trained for 2 h with either a 50-ms or 200-ms interval (Fig. 2a). 
An analysis of the distribution of the onset times of the E1→N2 
polysynaptic events revealed they were significantly shorter in the  
50-ms compared with the 200-ms group (Kolmogorov-Smirnov test,  
P < 0.005; Fig. 2b). As shown in the ‘voltagegrams’ (Fig. 2a), the 
polysynaptic activity tended to be clustered at earlier intervals in the 
50-ms group. These results confirm that the temporal structure of 
neural dynamics evoked by a single stimulus is shaped in an interval-
specific manner by the training stimulus.

The above experiments were performed by training in the incubator 
and testing on the electrophysiology rig. To determine the robustness 
of the phenomenon and sensitivity to training conditions (training in 
culture media versus artificial cerebrospinal fluid, and 35 °C incubator 
versus 30 °C on-rig), we repeated these experiments while training for  
2 h on the recording rig. Again, we observed a significant difference in 
the timing of the E1→N2 polysynaptic events between the 50- and 200-
ms groups, as can be observed in the voltage traces and in the deriva-
tive of the voltage traces, which highlights the upward deflections in 
the voltage as a result of synaptic input (Kolmogorov-Smirnov test,  
P < 0.005; Supplementary Fig. 2). To ensure that the timing effects were 

not somehow specific to 50- and 200-ms intervals and to examine the 
range over which interval-selective effects are observed, we also trained 
two groups of slices with intervals of 100 and 500 ms. Again, the results 
revealed that the distribution of the polysynaptic events was significantly 
shorter in the 100-ms as compared with the 500-ms group (Kolmogorov-
Smirnov tests, P < 10−4; Fig. 2c,d). We emphasize that, although these 
data establish that the timing of polysynaptic activity is influenced by 
the interval used during training, it is not the case that all of the cells 
in the network learn to time at the trained interval or that the timing is 
highly accurate (in some experiments, but not in others, the difference 
in temporal structure was detectable as a secondary peak of the averaged 
traces). Indeed, because activity during any time window T presumably 
relies on activity at time window T − 1, mechanistic considerations (see 
below) are consistent with the notion of a fairly broad distribution of timed 
responses and that network plasticity is best understood as changes in the 
distribution of polysynaptic responses.

It has previously been reported that evoked stimulation in naive slices 
can induce propagation of activity characterized by a time-varying  
pattern of neurons firing at different points in time5,6. Thus, one 
hypothesis is that the first pulse (E1) engages a time-varying pattern  
of activity and the second pulse (E2) functions as a reinforcer, poten-
tiating the synapses that are active at the time of the second pulse 
through conventional associative synaptic plasticity. Consistent with 
this hypothesis, the timing of the PSPs was significantly different  
(P < 0.005) in slices trained with a 50-ms interval in the presence or 
absence of the NMDA receptor antagonist d(−)-2-amino-5-phospho-
novaleric acid (AP5; Supplementary Fig. 3). This result suggests a 
role for the NMDA receptor, but the interpretation is limited by the 
fact that AP5 itself can alter neural dynamics during training or have 
induced homeostatic forms of plasticity. Furthermore, the amplifica-
tion of pre-existing responses at the time of the second pulse does 
not explain the qualitative changes in the distribution of responses 
(for example, note the slope of the diagonal band in Fig. 2c). We 
hypothesize that plasticity of neural dynamics may be an emergent 
property that relies on orchestrated changes at the multiple synaptic 
and cellular loci that ultimately govern the propagation of activity 
through recurrent neural networks. For example, theoretical stud-
ies have shown that some forms of homeostatic plasticity can lead 
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E1→N2 E1→N2Figure 2 Differential effects of training interval on neural dynamics.  
(a) All raw data plotted as voltagegrams from the 50-ms (top) and 200-ms 
(bottom) groups (n = 12 cells in each group). (b) Cumulative distribution 
(Kolmogorov-Smirnov test, P < 0.005) of polysynaptic event onset times 
for the E1→N2 pathway of the 50-ms (black) and 200-ms (gray) groups. 
(c) Voltagegram data from the 100-ms versus 500-ms experiments. 
Data are derived from 19 and 15 neurons (one neuron per slice) in the 
100-ms (top) and 500-ms (bottom) groups, respectively. (d) Cumulative 
distribution of polysynaptic event onset times for the E1→N2 pathway 
in experiments trained with a 100-ms (black) or 500-ms (gray) interval 
(Kolmogorov-Smirnov test, P < 10−4).
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to increases in the propagation of activity throughout networks7,8; 
these patterns might then be further shaped by associative forms of 
synaptic plasticity. Nevertheless, the types of synaptic and cellular 
changes underlying the network plasticity that we found remain to 
be elucidated.

It is well established that cortical function and network dynamics 
are sculpted by sensory experience9. Our results indicate that the 
behavior of cultured cortical networks is also shaped by the stimu-
lus history of the network in a manner that suggests that cortical 
networks are capable of learning or adapting to the timing of the 
stimuli. Specifically, the dynamics of the network activity was altered 
in a manner that reflected the temporal patterns of stimuli used dur-
ing training. Previous studies have reported stimulation-dependent 
changes in the levels of activity or in the correlation of activity after 
repeated stimulation of in vitro networks10–13. In addition, studies 
in dissociated cultures14 and in the Xenopus optic tectum15 have 
revealed that specific temporal patterns of stimulation can alter the 
timing of neural responses in recurrent circuits. For example, in dis-
sociated cultures, the interval of paired-pulse stimulation resulted in 
the emergence (or disappearance) of polysynaptic PSPs and changes 
in their timing. However, the timing of these events was primarily a 
product of the propagation delays of the circuitry and not directly 
predictable from the training interval per se14. Our results extend 
previous studies in two ways. First, we found that neural dynamics 
in a complex circuit can be modified in a computationally functional 
fashion as a result of experience; that is, these circuits would be 
better able to ‘tell time’ around the stimulated interval. Second, the 
temporal structure of neural dynamics reflects the temporal interval 
used during training. In this sense, our results represent an exam-
ple of stimulus-specific modifications of network dynamics and an  
in vitro analog of learning. Although further work is required to 
dissect the mechanisms, our findings support the view that, on short 
timescales, cortical circuits are inherently capable of telling time, 

suggesting that temporal and spatial processing are inextricably 
linked in cortical networks and that specialized mechanisms and 
circuits are not necessary for temporal processing1,2.

Note: Supplementary information is available on the Nature Neuroscience website.
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