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Most of the computations and tasks performed by the brain

require the ability to tell time, and process and generate

temporal patterns. Thus, there is a diverse set of neural

mechanisms in place to allow the brain to tell time across a wide

range of scales: from interaural delays on the order of

microseconds to circadian rhythms and beyond. Temporal

processing is most sophisticated on the scale of tens of

milliseconds to a few seconds, because it is within this range

that the brain must recognize and produce complex temporal

patterns — such as those that characterize speech and music.

Most models of timing, however, have focused primarily on

simple intervals and durations, thus it is not clear whether they

will generalize to complex pattern-based temporal tasks. Here,

we review neurobiologically based models of timing in the

subsecond range, focusing on whether they generalize to tasks

that require placing consecutive intervals in the context of an

overall pattern, that is, pattern timing.
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Introduction
The dynamic nature of our environment and the need to

move, communicate, and anticipate when events will hap-

pen, contributed to the evolution of neural mechanisms

that allow the brain to tell time. On one extreme, animals

detect the microsecond delays it takes sound waves to

travel from one side of the head to the other in order to

localize sound sources in space [1]. On the other extreme,

circadian rhythms allow animals to track day–night cycles

in the absence of external cues [2,3]. Between these

extremes, humans and other animals also time events on

the order seconds to minutes. Humans, for example, an-

ticipate the duration of traffic lights or the time between
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telephone rings. Similarly some animals track the amount

of time between visits to food sources in order to optimize

foraging [4,5]. Finally, rodents and other animals can be

trained on a diverse range of temporal tasks, such as peak

interval procedures in which they learn the interval be-

tween a stimulus and reward availability [6–8].

In the above examples, animals primarily need to time

isolated intervals or durations, as opposed to complex

temporal patterns defined by the relative timing of mul-

tiple consecutive intervals. The prosody of speech and

the rhythm of music, for example, are not defined by any

single interval or duration, but by the global temporal

structure of many consecutive intervals. Furthermore,

speech and music require timing multiple embedded

temporal patterns. For example, voice-onset time (the

interval between air release and vocal cord vibration)

contributes to phoneme discrimination [9], the duration

of vowels and pauses between words conveys information

about phrase boundaries [10,11], and speech rate

and contour contribute to prosody and comprehension

[12–14]. Thus speech relies on timing over a number of

different scales and features in parallel.

Perhaps the clearest example of just how sophisticated

our ability to process complex temporal patterns can be is

that language is reducible to a purely temporal code.

Specifically, when individuals communicate via Morse

code, the information is contained in the duration of

tones, the interval between them, and their global struc-

ture. At the relatively low speed of 10 words-per-minute

each dot and dash is 120 and 360 ms long respectively,

and the inter-letter and inter-word intervals are 360 and

840 ms. The offset of any tone marks the stop time of a

duration and the start time of an interval. This fact helps

constrain the possible timing mechanisms underlying

Morse code recognition, as any mechanism that requires

a significant amount of time to ‘reset’ before timing the

next interval, would be unlikely to satisfy the temporal

requirements of Morse code.

To distinguish between temporal tasks that require tim-

ing isolated intervals from those that require timing

multiple consecutive intervals within a global context,

we will use the terms interval timing (although we note

that this term is commonly used for timing in the range of

seconds to minutes [6]) and pattern timing (Figure 1).

While most psychophysical tasks focus on interval timing,

a number of temporal tasks rely on the production or
www.sciencedirect.com
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Figure 1
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Interval versus pattern timing. (a) In a duration discrimination task subjects listen to two tones of different durations, and are asked to determine

which is longer. Interval discrimination tasks are very similar, except that the temporal extent of each stimulus is demarcated by the interval

between two brief tones. (b) Communicating with Morse code requires pattern timing. Discrimination of the letters D, R, and U, requires paying

attention to the timing of each tone (is it a dot or a dash?), as well as the position of the dash within the overall pattern (Left). Discrimination of

the words PET and ANA also relies on determining the duration of each tone, but here the overall sequence of dots and dashes is the same. The

distinction between the words is coded in the position of the longer inter-letter intervals (Right).
discrimination of intervals embedded within a global

pattern. Such tasks include:

1) Temporal pattern reproduction: The motor production

of a sequence of different intervals [15–17].

2) Serial reaction time task: This task is a form of implicit

timing in which subjects are required to press an array

of keys that light up at specific times in a specific order.

With practice the reaction times to press each key

decrease [18,19].

To simplify our discussion, we will focus on aperiodic

patterns as opposed to periodic tasks in which subjects

have to discriminate or reproduce isolated or repetitive

intervals [20]. However, there is data suggesting that

periodic and aperiodic timing tasks rely on different

neural mechanisms [21,22].

It is clear that the brain uses multiple neural mechanisms

to tell time across temporal scales. For example the

mechanisms underlying sound localization, the ability

to tap along with the beat of a song, or generate circadian
www.sciencedirect.com 
rhythms are clearly distinct [23,24]. However, it is less

clear whether the neural mechanisms underlying interval

and pattern timing are the same: does pattern timing rely

on the timing of independent intervals, like marking the

laps on a stopwatch, or is each interval automatically

encoded in the context of a pattern? Here we ask if

the same mechanisms that have been proposed to under-

lie simple forms of timing can also account for the

complex temporal tasks such as recognizing and produc-

ing letters in Morse code. To answer this question we

examine three classes of neurobiologically-based timing

models — that is, those that have been implemented at

the level of simulated neurons (spiking or firing rate).

Synfire chain models of timing
One of the simplest models of how time might be

represented in networks of neurons is a synfire chain, which

is generally composed of a large number of neurons

arranged in separate pools connected with a feed-forward

architecture (Figure 2) [25–27]. Activity propagates from

one pool to another, such that each pool is activated at

different points in time — for example, pool one is acti-

vated at t = 0, while neurons in pool 10 might be activated
Current Opinion in Behavioral Sciences 2016, 8:250–257
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Figure 2
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Timing with synfire chains. Neurons in the songbird HVC nucleus burst

sparsely at specific points in a song’s syllable. Long and Fee (2010)

suggest that the temporal structure both within a syllable and

throughout a song may be generated by a synfire chain-like network.

Here the synfire chain is schematized by bursting neurons connected

in a feedforward architecture.

Modified from [30��].
at t = 100 ms. Thus it is possible for downstream circuits

to read out the elapsed time by detecting which pool is

currently active. Similarly, it is possible to produce a

timed motor response by connecting the appropriate pool

to appropriate output units. In their simplest form, synfire

chains implement delay lines, in which each synaptic step

inserts an additional delay.

It is easy to see how a synfire chain could be used to detect

or produce a 100 ms interval. To produce the interval the

neurons activated at 100 ms should be connected to

the appropriate output. For detection a readout neuron

should only fire when it receives simultaneous input from

the 100 ms pool and a direct sensory pathway. Important-

ly, timing via synfire chains could also underlie pattern

timing. For example, at the motor level a synfire chain

could potentially be used to generate a complex pattern

by connecting each pool of the chain to sequential output

units. Indeed, songbird studies have provided evidence

that synfire chains could underlie the complex forms of

timing necessary for song generation. This complex tim-

ing appears to be generated by sequential bursting of a

subset of neurons in the songbird sensorimotor nucleus

HVC. These HVC neurons fire at specific moments

during a song, providing the timing necessary for the

structure of each syllable and the sequence of syllables

within a song [28�,29]. Using in vivo recordings and

spiking neural network simulations, Long et al. [30��]
Current Opinion in Behavioral Sciences 2016, 8:250–257 
provided evidence that these firing patterns are consistent

with a feedforward synfire chain network architecture

(Figure 2).

Numerous additional studies in mammals have revealed

synfire chain-like temporal signatures. Specifically, popu-

lations of neurons that fire during specific points in time

(‘temporal receptive fields’) reveal chain-like activation

patterns when sorted according to firing latency — typi-

cally visualized as a diagonal band of activity [8,31,32]. It

remains unclear however, whether these patterns are

generated locally by the circuits being recorded, and if

so, whether they are a result of feedforward synfire

architecture. Indeed, while these patterns of activity

are certainly suggestive of a feedforward network, a

number of computational models have shown that they

can emerge from the propagation of activity within recur-

rent neural networks (see below).

Cortical circuits are characterized by recurrent connectiv-

ity between local pyramidal neurons [33,34]. While syn-

fire chains can in principle incorporate recurrent

connections, in practice they are typically implemented

within purely feed-forward architectures. Consequently,

it is highly unlikely that cortical networks are actually

feedforward synfire chains. A related and important issue

is the capacity of synfire chains. Specifically: how many

trajectories of a given temporal length can one feedfor-

ward synfire network encode? In one sense the capacity is

very low. For example in a purely feed-forward network,

if we assume that each neuron only fires once and must

participate in every pattern, then the capacity is essen-

tially one trajectory (which is not the case in a recurrent

network given these same assumption [35]). However, if

we assume that different subpopulations of neurons with-

in a pool fire during different trajectories, then the capac-

ity increases [36].

Overall, synfire chains offer a potentially general, and

biologically plausible, mechanism to account for both

interval and pattern timing. However, the traditional

focus on feedforward synfire chains is probably unrealistic

because of the absence of recurrency and their limited

capacity.

Positive feedback models
Other neurobiologically-based models of timing explicit-

ly rely on positive feedback through recurrent excitatory

connections. One such model was developed to account

for a series of experimental observations of Shuler and

colleagues who reported that V1 neurons can encode the

interval between stimulus onset and a reward [37,38,39�].
In the basic task, rats are exposed to a visual flash which

predicts the arrival of a water reward after a delay Dt (more

specifically, the reward was available after a fixed number

of licks, which correlates with time). In vivo single unit

recordings from V1 revealed that a subpopulation of
www.sciencedirect.com
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neurons encode the reward interval — for example, some

neurons maintained a relatively high firing-rate during the

delay period.

To account to this experimental data, Shouval and col-

leagues developed a spike-based recurrent neural net-

work model and described how local cortical circuits

might encode the reward interval [39�,40��,41,42]. Their

hypothesis is that the observed prolonged activity is

generated through recurrent excitatory connections. This

approach has parallels in models of short-term memory

that have used well-tuned positive feedback to maintain a

fixed level of activity [43–45]. We also note that there is

a significant experimental literature reporting that neu-

rons can exhibit ramping firing rates during well-trained

temporal tasks [46–48]; and that some computational

models of ramping neurons also incorporate network-

level positive feedback [49].

In Shouval’s model, positive feedback is being used to, in

effect, generate a long network time constant. The

authors find that potentiating the recurrent connections

through a self-organizing Hebbian-like plasticity rule can

extend network-wide firing elicited by a specific cue.

Recently it has been shown that the synaptic tuning

can be achieved using an experimentally derived form

of associative learning that takes into account the fact that

the reinforcement signal is delayed in relation to the

activity patterns that trigger LTP or LTD [42]. Impor-

tantly, the recurrent positive feedback does not maintain

the activity at some fixed-point, as in working memory

models. Rather, low-levels of positive feedback are suffi-

cient to extend the amount of time that the network is

active, effectively controlling the network-level decay

time [43]. In this manner the mean duration of the evoked

firing can represent reward onset time. Significantly,

these firing patterns are a result of the dynamics within

the local cortical network: they do not require tonic

external input nor dedicated timing cells, supporting

the theory that temporal processing is a general and

intrinsic property of recurrent neural networks [50–52].

While this positive feedback model elegantly accounts for

the experimental data on a form of interval timing, it is

unclear if it would extend to pattern timing. Specifically,

positive feedback mechanisms seem unlikely to be able

to time consecutive intervals because the network would

have to be rapidly reset at the end of each interval, which

also marks the beginning of the next. Thus, the experi-

mental and computational results of Shuler and Shouval

further suggest the presence of distinct mechanisms for

interval and pattern timing.

State-dependent networks and population
clocks
One of the first neurobiologically-based models of timing

and temporal processing proposed that networks of neurons
www.sciencedirect.com 
are intrinsically able to tell and encode time as a result of

dynamic changes in the state of neural networks

[53,54,55�]. Specifically, this model proposes that the evolv-

ing state of neural circuits represents time.

At the sensory level, the hypothesis is that the discrimi-

nation of temporal intervals arises from the interaction

between the internal-state of a network and incoming

stimuli. In this sensory mode, the recurrent weights of

these networks are generally fairly weak — that is, not

capable of sustaining self-perpetuating activity. Thus,

much of the temporal information emerges from neural

and synaptic properties that are naturally time-varying

(the so-called hidden states — for example, short-term

synaptic plasticity). Such models have been shown to

effectively discriminate not only simple intervals, but

complex temporal patterns as well [51,56–59]. The hy-

pothesis is that each sensory event interacts with the

current state of the network, forming a pattern of network

states that naturally encodes each event in the context of

the recent stimulus history — much as the ripples gener-

ated by each raindrop falling in a pond will interact with

the ripples created by previous raindrops. Experimental

studies have supported this hypothesis by demonstrating

that cortical networks contain information about not only

the current stimulus, but also the interval and order of

recent events [60–64].

The same general framework has also been applied to

timing in the motor domain [55�,65,66,67��]. In contrast to

sensory timing, motor timing relies on the active produc-

tion of a response at the appropriate interval after a start

cue. Therefore, in the motor regime, the recurrent

connections need to be relatively strong, that is, capable

of self-perpetuating activity. In state-dependent models

of motor behavior, time is encoded in the dynamically

changing patterns of active neurons, forming a population
clock [68]. The activity in the network traces out a trajec-

tory in neural state space, in which each point in time

corresponds to a unique population of active neurons.

These patterns can be sparse: a few neurons activated at

any point in time and each neuron activated at only one

point, as in a synfire chain; or ‘dense’: with many neurons

activated at a time, and each neuron potentially active at

different points in the same trajectory (we can think of

these as ‘high-entropy’ trajectories). Experimental

studies have reported numerous examples of either

sparse functional feed-forward patterns of activity

[8,28�,30��,69,70], or complex high-entropy patterns

[71�,72–74] of activity that encode time. A recent experi-

mental and computational study also provided support for

the notion that time is represented in high-dimensional

trajectories [75��]. In this work, recordings from over

100 neurons in the premotor cortex revealed a neural

trajectory that evolved over a period of seconds during a

task in which monkeys expected a reward between

1.5 and 3.5 s after the start cue. Analysis suggested that
Current Opinion in Behavioral Sciences 2016, 8:250–257
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Figure 3
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An example of a population clock implemented in a recurrent neural network (RNN) that produces Morse code spelling of ‘Hello.’ (a) The structure

of the RNN consists of a single input, a sparse recurrent network of 1200 firing rate units, and a single output that receives connections from all

the RNN units. (b) A subpopulation of the RNN units after training, showing the trained spatiotemporal pattern of activity, or neural trajectory. The

RNN was trained to form a stable trajectory (a ‘dynamic attractor’) by tuning the recurrent weights to reproduce a 3.5 s target trajectory in

response to a brief ‘trigger’ input. (c) The output unit is then trained to generate the dots, dashes and spaces in Morse code of the word ‘HELLO’,

using the temporal structure within the neural trajectory of the RNN.
the reward window was represented in a trajectory seg-

ment, and that temporal expectation was intrinsically

represented because this segment was the closest to a

boundary that, if crossed, triggered a motor response.

Figure 3 provides an example of pattern timing in a

population clock model implemented in a simulated

recurrent neural network (RNN) based on firing rate

units. The network starts in a high-gain regime which

generates a high-dimensional trajectory in response to a

brief input. The network is then trained to reproduce this

‘innate’ trajectory, by adjusting the weights of the recur-

rent network [67��]. As a result of this training, the

trajectory becomes locally stable (a ‘dynamic attractor’).

Because this trajectory is stable in high-dimensional

space, the output unit can then be trained to produce

an arbitrarily complex temporal pattern, in this case the

Morse code spelling of ‘Hello.’ Here it should be stressed

that the learning rule used to adjust the recurrent weights

is not biologically plausible.

Synfire chain and positive feedback models can certainly

be applied to pattern timing, but we suggest that state-

dependent network models are better suited for pattern

timing because they are inherently high dimensionsal.

Consider that six different isolated intervals, when ar-

ranged into a sequence of four (that is, a pattern composed

of four intervals) can produce a total of 1296 potential

patterns. A single state-dependent network is well suited to

learn any arbitrary set of these patterns. Thus, state-de-

pendent networks, and related reservoir computing models

[76–78] represent general computational frameworks
Current Opinion in Behavioral Sciences 2016, 8:250–257 
capabable not only of interval and pattern timing, but also

spatial and temporal computations.

Conclusions
The great majority of experimental and theoretical work

on timing in the subsecond range has focused on isolated

intervals and durations, that is, interval timing. Here we

stress that within this time scale the brain also performs a

wide range of temporal tasks that require processing

consecutive intervals and placing these in a temporal

context — speech, music, and Morse code being clear

examples of such pattern timing.

In addition to the distinction between interval and pat-

tern timing, there are other temporal features that still

must be carefully addressed in computational models. Of

particular relevance is temporal scaling: how do we produce

or recognize the same global temporal pattern at different

speeds? A pianist can, for example, play the same piece of

music at a range of different musical tempos. Though

temporal scaling is a robust phenomenon, the underlying

neurobiological mechanisms are not known, and indeed

temporal scaling has not been reported in any of the three

classes of biologically plausible models discussed above.

A few experimental studies suggest that neural trajecto-

ries encode relative time. That is, when animals time

intervals of different lengths within the same overall

pattern, it appears that the same neural trajectory may

be replayed at different speeds [8,71�,79].

Given the diverse range of temporal tasks the brain

performs, together with the large number of brain areas
www.sciencedirect.com
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that have been implicated in timing in the range of tens of

milliseconds to a few seconds, we argue that the brain

does not have a singular timing mechanism. Rather, the

brain has a number of different timing mechanisms, each

used to solve specific temporal tasks. In some cases, for

example, the brain may use specialized mechanisms for

interval timing that are not capable of pattern timing.

Potential examples include positive feedback mecha-

nisms and the ramping of neuronal firing rates. But in

other instances — for example the discrimination of sim-

ple and complex auditory patterns — we propose that the

same neural mechanisms can underlie both interval and

pattern timing.
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