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A model of temporal scaling correctly predicts
that motor timing improves with speed
Nicholas F. Hardy 1,2, Vishwa Goudar2, Juan L. Romero-Sosa2 & Dean V. Buonomano1,2,3

Timing is fundamental to complex motor behaviors: from tying a knot to playing the piano.

A general feature of motor timing is temporal scaling: the ability to produce motor patterns

at different speeds. One theory of temporal processing proposes that the brain encodes

time in dynamic patterns of neural activity (population clocks), here we first examine whether

recurrent neural network (RNN) models can account for temporal scaling. Appropriately

trained RNNs exhibit temporal scaling over a range similar to that of humans and capture

a signature of motor timing, Weber’s law, but predict that temporal precision improves

at faster speeds. Human psychophysics experiments confirm this prediction: the variability

of responses in absolute time are lower at faster speeds. These results establish that RNNs

can account for temporal scaling and suggest a novel psychophysical principle: the Weber-

Speed effect.
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It is increasingly clear that the brain uses different mechanisms
and circuits to tell time across different tasks. For example,
distinct brain areas are implicated in sensory1,2 and motor3–6

timing tasks on the scale of hundreds of milliseconds to a few
seconds. This multiple clock strategy likely evolved because dif-
ferent tasks have distinct computational requirements. For
example, judging the duration of a red traffic light requires esti-
mating absolute durations, but tying your shoe and playing the
piano rely on the relative timing and order of activation of similar
sets of muscles. A general property of these complex forms of
motor control is temporal scaling: well-trained motor behaviors
can be executed at different speeds. Despite the importance of
temporal scaling in the motor domain, basic psychophysical and
computational questions remain unaddressed. For example, is
temporal scaling intrinsic to motor timing? In other words, once a
complex pattern is learned can it be accurately sped-up or down,
like changing a movie’s playback speed?

The neural mechanisms underlying temporal scaling remain
unknown in part because motor timing itself is not fully under-
stood. Converging evidence from theoretical7–9 and experimental
studies suggests that motor timing is encoded in patterns
of neural activity, i.e., population clocks4,5,10–15. Although
numerous computational models have been proposed to account
for timing16,17, temporal scaling remains largely unaddressed.

Here, we show that RNNs can be trained to exhibit temporal
scaling. The model also accounts for a signature of motor timing
known as the scalar property (Weber’s law): the standard
deviation of timed responses increases linearly with time18.
However, the model predicts that the relationship between var-
iance and time is not constant, but dependent on speed. A psy-
chophysical study in which humans produce a complex pattern of
taps confirms this prediction: precision is better at the same
absolute time when a motor pattern is being produced at a higher
speeds.

Results
Temporal scaling of complex motor patterns. Humans can
execute well-trained complex movements such as speaking or
playing a musical instrument at different speeds. However, it is
not clear how well complex temporal patterns can be auto-
matically executed at different speeds. A few studies have
examined temporal scaling in humans19,20, however, to the best
of our knowledge no studies have trained subjects to learn
aperiodic temporal patterns at a single speed, across days, and
examined the subject’s ability to reproduce that pattern at faster
and slower speeds. We thus first addressed whether temporal
scaling is an intrinsic property of motor timing by training sub-
jects on a temporal pattern reproduction task (Methods). To
ensure that any temporal scaling was not the result of previous
experience, subjects learned to tap out a Morse Code pattern (the
word “time”) at a speed of 10 words-per-minute (the duration of
a “dot” was 120 ms). The target pattern was composed of six taps
and lasted 2.76 s (Fig. 1a).

After training for 4 days, subjects were asked to produce the
pattern at the original speed, twice as fast (50% duration), and at
half speed (200% duration) under freeform conditions—i.e., they
were not cued with any target pattern during this test phase. At
the 1× speed subjects produced the target pattern with a
performance score (correlation between the produced and target
patterns) of 0.66 ± 0.04. As expected in a freeform condition,
there was significant variability in the produced speeds and few
subjects reached the speeds of 2× and 0.5×. Thus we were able to
measure how well subjects scaled the trained pattern, and the
relationship between performance and speed. We quantified
temporal scaling using a scaling index based on the time

normalized correlation (Methods) between the 1× and scaled
patterns (Fig. 1b). The scaling index and overall pattern duration
for both the fast (short) and slow (long) patterns were highly
correlated (r= 0.75, p= 0.008; and r=−0.63, p= 0.038, respec-
tively). Furthermore, the normalized RMSE (NRMSE) tended
to be smaller for the trained 1× speed, and most of the NRMSE
was attributable to the standard deviation as opposed to the bias
(i.e., the difference in the average response and target times;
Supplementary Fig. 1). These results confirm that with moderate
levels of training, humans are intrinsically able to speed up or
slow down a learned motor pattern, but that performance
progressively degraded at untrained speeds.

RNN model of motor timing. How can neural circuits generate
similar temporal patterns at different speeds? To examine the
potential mechanisms of temporal scaling, we turned to a
population clock model of timing that has previously been shown
to robustly generate both simple and complex temporal patterns8.
The model consisted of an RNN with randomly connected firing
rate units whose initial weights were relativity strong, placing the
network in a high-gain (chaotic) regime, in which networks
exhibit complex (high-dimensional) activity. In theory, this
activity can encode time while retaining long-term memory on
scales much longer than the time constants of the units. In
practice, however, this memory is limited by chaotic dynamics21.
Chaotic behavior impairs networks’ computational capacity
because the activity patterns are not reproducible in noisy con-
ditions. It is possible, however, to tune the recurrent weights to
tame the chaos while maintaining complexity (Methods). The
result is the formation of locally stable trajectories, i.e., dynamic
attractors, that robustly encode temporal motor patterns. We first
asked whether these RNNs can account for temporal scaling.

An intuitive mechanism for temporal scaling is that increased
external drive onto a network increases the speed of its dynamics.
Thus, to test whether these RNNs could account for temporal
scaling, we examined the effects input drive on speed. The RNNs
received two independent inputs: one transient cue to start a trial
and a second tonic speed input (ySI) to modulate the speed of the
dynamics. The recurrent units generate motor patterns through
synapses onto a single output unit (Fig. 2a).

We trained chaotic RNNs to reproduce, with significant
injected noise, an innate pattern of network activity (i.e., one it
produced before any weight modification) while receiving a fixed
amplitude speed input (defined as speed 1×, ySI= 0.15), then
trained the output to produce an aperiodic pattern composed of
five so-called taps after the cue offset (Methods). Unlike biological
motor systems, RNNs in high-gain regimes are typically
spontaneously active, i.e., their activity is self-perpetuating. To
increase the model’s congruence with cortical dynamics and
motor behavior, we developed a method of training the recurrent
units to enter a rest state when not engaged in a cued task. In this
procedure, the recurrent units are trained to maintain a firing rate
of approximately zero after the target pattern has terminated
(Methods). This training produces a gated dynamic attractor: in
response to a cued input the network produces the trained
dynamics and then returns to a rest state (Fig. 2b). In contrast, in
response to an untrained input the network activity quickly
decays to the rest state. Consistent with the lack of spontaneous
activity the real eigenvalues of the trained weights are less than
one (Supplementary Fig. 2).

After training, the network was able to reproduce the target
output at the trained speed. However, when tested at a range
of speeds—by changing the tonic speed input—the network
exhibited limited temporal scaling (Fig. 2c). Notably, these
scaled patterns degraded substantially (Figs. 2c, d and 3). This
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establishes that simply changing the amplitude of a tonic input
cannot account for the factor of four range of temporal scaling
observed in humans.

RNN model of temporal scaling predicts a Weber-Speed effect.
We next examined whether temporal scaling could be learned by
training RNNs to produce the same pattern of activity in the
recurrent units at two different speeds (0.5× and 2×, Methods).
After the recurrent network was trained, we trained the output to
produce the same pattern as in Fig. 2, but only at the 2× speed.
Given the highly nonlinear—and initially chaotic—nature of
these RNNs it was unclear if they would scale to novel speed
inputs. But the results show that when tested at different speed
levels, networks exhibited robust linear scaling (Fig. 3a, b). Note
that because the output was trained only at 2× speed, any change
in the speed of the output reflects an underlying change in the
speed of recurrent activity. Compared to RNNs trained on a
single speed, those trained on two speeds accurately interpolated
their activity between the trained speeds. As mentioned there was
a small degree of “intrinsic” temporal scaling in the RNNs trained
at one speed (black lines in Fig. 3c), however, the scaling was very
limited (0.9× to 1.15×, a factor of approximately 1.25). In con-
trast, when trained on two speeds RNNs accurately interpolated
over a factor of 4, and even at speeds outside the trained range,
there was some temporal scaling (Supplementary Fig. 3).

Because Weber’s law is often held as a benchmark for timing
models17, we examined whether the SD of the model’s across-trial
tap times was linearly related to absolute (mean) time. There was
a strong linear relationship between SD and time, (Fig. 4b),
allowing us to calculate the Weber coefficient (slope of the
variance vs. t2). In contrast to other timing models—drift-
diffusion models for example22—RNNs inherently account for
Weber’s law. This is in part because the recurrent nature of these
networks can amplify noise, imposing long-lasting temporal noise
correlations, leading to near linear relationships between SD and
time23 (Supplementary Fig. 4)

Speed was negatively correlated with both coefficient of
variation (CV or Weber fraction, Fig. 4c), and Weber coefficient
(Fig. 4d). Specifically, the lower the speed the higher the Weber
coefficient. Moreover, this effect was robust to changes in
network size, noise amplitude, and whether networks were
trained to speed-up or slow-down at higher input amplitudes
(Supplementary Fig. 5). This counterintuitive observation implies
that at the same absolute time temporal precision is significantly
lower at slower speeds. To use an analogy: a clock would be more
precise at timing a two second interval when that interval was
part of a short (high speed) pattern compared to a two second
interval that was part of a long (slow) pattern. In other words, the
model predicts that humans are less precise halfway through a
four second pattern than at the end of the same pattern produced
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Fig. 1 Limited temporal scaling of a learned Morse code pattern. Subjects were trained to tap the Morse code for “time” at a speed of 1× (10 wpm) over four
consecutive days (Methods). a On the fifth day, subjects were asked to produce the pattern at three different speeds: twice as fast (2×), normal speed (1×),
and twice as slow (0.5×) (data from a single subject). Bottom: Average of the responses above plotted in normalized time. The legend indicates the
produced speed relative to the trained (1×) condition and the correlation of the mean response to the response at trained speed. b The relationship
between produced speed and temporal scaling accuracy for all 11 subjects. There was a significant correlation between speed and accuracy for both the fast
(r= 0.75, p= 0.008, two-tailed t-test) and slow (r=−0.63, p= 0.038, two-tailed t-test) patterns
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twice as fast. We will refer to this speed-dependent improvement
in temporal precision as the Weber-Speed effect (and address its
potential relationship with the subdivision effect below).

The learning rule used to train the RNNs provides a robust
means to generate complex and highly stable spatiotemporal
patterns (but is not meant to represent biologically realistic learning
rule in recurrent neural networks). It is possible that the Weber-
Speed effect observed above emerged from some property specific
to the training. Thus, we also examined timing in RNNs trained
with Hessian-free backpropagation through time (BPTT)24,25 and a
standard echo-state network26,27. Compared to innate learning,
these training algorithms were not as well-suited to learning the
same complex long-lasting aperiodic temporal patterns across
speeds. Indeed, training RNNs to produce the aperiodic output
with BPTT did not result in robust generalization (at least under
the parameter conditions used here), but networks using a simple
linear ramping output generalized their speed via parallel neural
trajectories (Supplementary Fig. 6). Importantly, both rules
generated RNNs that exhibited a Weber-Speed effect at the
trained speeds (Supplementary Fig. 6). Thus, our results suggest
that the Weber-Speed effect is a robust property of timing
generated by the dynamics of RNNs (Supplementary Fig. 7).

Humans exhibit the Weber-Speed effect. To the best of our
knowledge, the notion that temporal precision is worse for
complex temporal patterns produced at low speeds has never
been predicted or experimentally tested. Thus, we tested this
prediction using a temporal reproduction task in which subjects

were required to reproduce an aperiodic pattern composed of six
taps at five different speeds (the same pattern and speeds used
model above). Subjects (n= 25) listened to an auditory pattern
composed of six tones and were asked to reproduce it using a
keypad (Fig. 5a, Methods). In each block subjects heard the
pattern at one of five temporally scaled speeds (0.5×, 0.66×, 1×,
1.5×, and 2×) and reproduced the pattern (Fig. 5b, single subject).
Based on the mean and SD of the taps it is possible to calculate
the CV for each tap, and the Weber coefficient (inset Fig. 5b right,
SD vs. t is shown for visualization). Across subjects (Fig. 5c) CVs
were significantly different across speeds (F4,96= 10.4, p < 10-6,
speed effect of a two-way repeated ANOVA), and the Weber
coefficient decreased with higher speed (F4,96= 7.3, p < 0.001,
one-way repeated ANOVA).

The above data is potentially confounded with task difficulty or
learning—i.e., the difference in the Weber coefficients across
speeds could potentially reflect some nonspecific effect in which
slower patterns are harder to learn. We thus trained a subset of
subjects (n= 14) on the fastest and slowest speeds over an 8-day
period. Again, at the same absolute time the CV was lower for the
faster speed across training days (e.g., ≈0.7 s in Fig. 5d). The
Weber coefficient was significantly smaller for the faster speeds
across training days (Fig. 5d, inset; F1,13= 16.58, p < 0.002, speed
effect two-way repeated ANOVA; pairwise posthoc test on each
day, maximum p= 0.056, Tukey-Kramer)—even as subjects
showed asymptotic learning, seen in the progressive decrease in
the Weber coefficients across days. To further confirm the
Weber-Speed effect and examine its dependence on training we
performed a second study in which subjects (n= 14) were trained
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input the RNN activity does not enter the trained dynamic attractor, and activity quickly returns to rest. c Networks trained at one speed do not scale the
speed of their dynamics according to changing input drive. The speed signal was varied between ySI= [0.3,0.23,0.15,0.1,0.075]. d Traces shown in
c plotted in normalized time
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on three speeds (0.5×, 1×, and 2×) across 3 days. Analysis of the
Weber coefficient across speeds and days again revealed a robust
effect of speed (Supplementary Fig. 8, F2,28= 11, p < 0.0005, two-
way repeated ANOVA) as well as an improvement across days
(F2,28= 7.1, p < 0.005), and no significant interaction between
speed and day of training. These results confirm that temporal
precision is better at faster speeds.

Speed or subdivision?. The Weber-Speed effect is potentially
related to the so-called subdivision effect. Specifically, it is well-
established that the timing of a given absolute interval can be
improved by subdividing that interval into smaller subintervals—
e.g., by tapping your foot or counting—can improve the timing of
a longer interval28,29. Subdivision cannot account for the Weber-
Speed effect in the model because the internal dynamics is
independent of what the output unit is trained to do, but it could
explain the psychophysical results because the subintervals of
the pattern are shorter at higher speeds. To directly compare
both the speed and subdivision hypothesis in the psychophysics
experiments we trained subjects on a periodic subdivision
task over 5 days. Subjects produced a series of taps with a total
duration of 2400 ms, with four different inter-tap intervals
(speeds; Fig. 6a). Similar to results from the aperiodic temporal
pattern, subjects showed reduced variability at the same absolute
time when the inter-tap-interval was shorter (Fig. 6b). Here,
the subdivision and speed hypotheses are confounded, but can
be dissociated based on the standard explanation of the sub-
division effect. Subdivision is hypothesized to improve timing
because a central clock is reset at each tap30, whereas in our
population clock model timing of a complex pattern relies on a
continuous timer. In the case of a single interval both views
generate the same variance, but in the case of a pattern composed
of a sequence of intervals (t1, t2, …, tn) they generate different

variance signatures (Fig. 6c). Specifically, the standard inter-
pretation of the subdivision (reset) effect is that the total variance
is a function of the sum of the component intervals squared,
whereas under the speed (continuous) perspective the variance is
a function of the absolute time squared. In other words, the
Weber-Speed interpretation predicts that the SD vs. time rela-
tionship should be linear for all taps at a given speed, while
subdivision predicts a sublinear relationship. We fit each subject’s
responses assuming either a speed or subdivision interpretation of
Weber’s generalized law. While both fits captured the data well,
the goodness-of-fit of the speed prediction was significantly better
(Fig. 6c, d, fits for day 5 shown, F1,10= 48, p < 10−4, two-way
repeated ANOVA on Fisher-transformed r2 values). A similar
analysis for the results of the aperiodic psychophysical experi-
ment presented in Fig. 5 also revealed that the speed fit was
significantly better than the reset fit (Supplementary Fig. 9). These
results suggest that the standard subdivision effect may be best
interpreted not as the result of resetting an internal timer but
rather of increasing the speed of the internal dynamics of a
population clock.

Mechanisms of temporal scaling. Having established and tested
a model of temporal scaling, we next used the model to examine
potential network-level mechanisms underlying temporal scaling.
At first glance the notion that an RNN can generate the same
trajectory at different speeds is surprising, because it seems to
imply that different tonic inputs can guide activity through the
same points in neural phase space at different speeds. Further-
more, it is important to emphasize that the relationship between
input amplitude and speed is arbitrary: the model exhibits tem-
poral scaling whether the network is trained so that larger speed
inputs increase or decrease trajectory speed (Supplementary
Fig. 5g), implying that temporal scaling is an emergent
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activity at 0.5× (ySI= 0.075) and 2× (ySI= 0.3) speeds. The output was trained only at the 2× speed. After training (weight modifications stopped), the
network was tested at different input speed levels (ySI= [0.075,0.1,0.15,0.23,0.3])—corresponding to speeds of 0.5, 0.66, 1, 1.5, and 2×. Three example
test trials at each speed are overlaid. b One trial from each test speed above shown with time normalized to the end of the active period. c Networks (n=
10) trained at two speeds generalize to untrained speed inputs. Top: The speed factor (the mean ratio of the final tap at each speed to the mean final tap
time at 1× speed over 20 trials) of networks trained at two speeds (green), and one speed (black). Bottom: The scaling index of networks trained on two
speeds is higher than those trained on one speed. Error bars represent SEM (N= 10), and circles show the value for each network. Because the activity of
the one-speed networks degrades at more extreme speeds as shown in Fig. 1, many networks did not produce detectable taps (output peaks) at extreme
speeds and we, therefore, could not calculate a scaling index or index for them. We show in dotted lines the values for the networks that completed at least
one trial at the extreme speeds

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07161-6 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4732 | DOI: 10.1038/s41467-018-07161-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


phenomenon. Additionally, untrained RNNs will not scale when
the tonic input changes. In the chaotic regime used here, any
change in input produces dramatically different trajectories, and
even when trained on one speed the network did not exhibit
robust scaling (Figs. 2, 3). Furthermore, when RNNs were trained
on two speeds with BPTT robust temporal scaling was not
observed (Supplementary Fig. 6).

Because the network is trained to reproduce the same trajectory
at two different speeds, the most straightforward way scaling to
novel speeds could emerge is via parallel neural trajectories. But
such a mechanism could take two forms: nearby trajectories that
are traversed at different speeds, or distant trajectories that are
traversed at the same speed. As a first step toward examining the
underlying mechanisms we first visualized the trajectories in
principal components analysis (PCA) space. This revealed that
trajectories at different speeds follow offset paths of similar length
through neural phase space that are traversed over different
durations (Fig. 7a). In other words, the trajectories are arranged
according to speed in an apparently parallel manner. To quantify
this observation, we calculated the Euclidean distance in neural
space (n= 1800) between the trajectory at each speed and the
0.5× speed (Fig. 7b). Finding the minimum distance between
the comparison speed and the 0.5× speed revealed that the
trajectories maintained a fairly constant distance from each other
(Fig. 7c). Examining the times that the trajectories were closest
also provided an unbiased estimate of the relative speed. For
example, if the test trajectory is moving four times faster as the
reference, they should be closest when the fast trajectory has been
active for ¼ the elapsed time. In other words, plotting t2xmin vs.
t0:5xelapsed should form a line with slope 0.25, which is indeed what

we observed. Moreover, this relationship generalized to novel
interpolated speeds (Fig. 7d).

Given that the network was trained to reproduce the same
trajectory at two speeds, it is not surprising that it converges to a
solution with two nearby parallel trajectories. More interesting is
that it is able to generalize to novel speeds, and how this is
achieved. That is, how does changing the magnitude of a static
input result in trajectory speeds that scale approximately linearly
with the input magnitude? Understanding the underlying
dynamics of complex nonlinear neural networks is a notoriously
challenging problem with few tools available25. Here, we
introduce a method to dissect the internal forces driving a
network. We first quantified the total drive to the network: the
time-dependent change in the total synaptic input onto each
neuron in the RNN. Measuring the magnitude (Euclidean norm)
of the total drive showed that—in contrast to untrained networks
or to networks trained at a single speed—the total drive scaled
with the cued speed (Fig. 8a). To address how the total drive
scales the neural dynamics, we used a novel network drive
decomposition method31. This approach decomposes the total
network drive into its three components: recurrent synaptic drive,
synaptic decay (which drives the network towards the origin), and
the external tonic (time independent) speed input (Fig. 8c). While
the speed input magnitude scaled with speed as defined by the
experimental conditions, the recurrent and decay drive magni-
tudes did not, meaning that the recurrent and decay components
in isolation cannot account for temporal scaling (Fig. 8b).

Analysis of the dynamics also revealed that, at each speed, the
trajectories traversed directions that are independent of the speed
input—i.e., the projection of each trajectory onto the speed input
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axis has low variance (explained variance was <1% at all speeds).
There are two consequences to the observations that the time-
varying dynamics are not driven by the input, and that the
recurrent drive and decay magnitudes did not exhibit temporal
scaling: (1) at each speed, some combination of these internal
drive components counterbalance the speed input; and (2) they
collectively underlie temporal scaling of the trajectory. To isolate
the contribution of these interactions we studied the internal
drive components in the subspace orthogonal to the speed input
axis (Fig. 8c). Measurements showed that even in this subspace,
changes of recurrent drive and decay magnitudes did not explain
temporal scaling of the total drive. Instead, the recurrent synaptic
drive and decay opposed each other (the angle between them is
obtuse) throughout the trajectory, and the extent of this
opposition altered the trajectory’s speed (Fig. 8d). Specifically,
the angle between the two components decreases as the speed
input increases (θ2 < θ1), amplifying the net (or total) drive.

Projecting the trajectories onto the speed input axis revealed
that speed is encoded in the trajectory’s position rather than its
direction (Fig. 8e). Moreover, by traversing phase space along
directions that are independent of the speed input, the trajectory’s
position with respect to the speed input stayed relatively constant,

and thus so did actual speed. To confirm this, we asked if—as
with biological motor patterns—a network could switch speeds
mid-trajectory. Indeed, by decreasing the speed input in the
middle of a fast (2×) trajectory we observed a rapid transition to
the slow trajectory (Fig. 8f). Network drive decomposition
showed that a change in the speed input caused an imbalance
between it and the internal drive, altering the position of the
trajectory along the speed input axis. In turn, this increased
the angle between the recurrent and decay drives, slowing the
trajectory down. It also rebalanced the speed input and the
internal drive components such that trajectory speed stopped
changing when the balance between input and internal drive was
restored (Fig. 8e). Altogether, these results demonstrate that
temporal scaling is the outcome of speed input-dependent
balance between the recurrent and decay drives.

Discussion
It is increasingly clear that on the scale of hundreds of milliseconds
to seconds the brain represents time as dynamically changing pat-
terns of neural activity (i.e., population clocks)4,5,12,14,32. Timing on
this scale exhibits: (1) the ability to execute the same motor pattern
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at different speeds, and (2) a linear increase in motor variability
with time (Weber’s law). Here, we unify and extend these obser-
vations by building an RNN that not only performs temporal
scaling and accounts for Weber’s law, but also predicts that Weber’s
law is speed-dependent. We tested this prediction using human
psychophysics experiments, confirming that in absolute time the
temporal precision of motor responses is dependent on speed.

Few studies have quantified temporal scaling of complex
aperiodic motor patterns in humans19,20. However, studies in the
sensory and sensory-motor domain have clearly established that
interval discrimination learning does not generalize new inter-
vals33–36. In a manner of speaking, temporal scaling of motor
patterns (e.g., Fig. 1) represent generalization to different inter-
vals. However, the difference between interval and pattern timing
is significant16. Simple intervals are defined by their absolute
duration—i.e., the difference between a scaled interval and a
different interval is ambiguous—whereas patterns can be defined
by the relationship of the component subintervals. Thus, the
apparent difference between generalization of learned intervals
and patterns could be related to different underlying neural
mechanisms.

While Weber’s law is well-established in humans37–39, it’s
neural underpinnings are debated22. Early internal clock models
consisted of an accumulator that integrated the pulses of a noisy
oscillator. In their simplest form, however, these models did not
account for Weber’s law because the SD of such a clock followsffiffi
t

p
rather than t. Thus, early internal clock models postulated that

Weber’s law arises from a second clock-independent noise source,
such as the memory of the interval being generated18,28. Other
models22,40,41, including those based on the variance between
multiple timers, can intrinsically account for Weber’s law, but the
biological plausibility of such variance-based models is unclear.
Our results suggest that population clocks based on recurrent
dynamics can intrinsically account for Weber’s law. Theoretical
analyses have shown that Weber’s law can arise from temporal
noise correlations23; RNN’s can actively amplify noise through
internal feedback likely contributing to Weber’s law.

Weber’s law raises an important question: if independent noise
sources cause SD to increase as a function of

ffiffi
t

p
, why does the

nervous system settle for Weber’s law23? First, it is possible that
this reduced accuracy is an unavoidable consequence of the
correlated noise42. For example, in any neural circuit, slow fluc-
tuations produced by sensory inputs or other brain areas will
impose local temporal correlations. Second, the amplification of
internal noise may make Weber’s law a necessary cost of the
increased computational capacity recurrent neural networks
provide.

Why has the Weber-Speed effect not been previously reported?
One reason is that most timing studies have relied on interval or
duration tasks rather than pattern timing; thus, the Weber coef-
ficient is calculated by fitting the variance of timed responses of
distinct intervals collected across blocks. With this approach it is
not possible to explicitly examine temporal scaling and the Weber
coefficient. In contrast, by studying complex motor patterns
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consisting of multiple taps43, it is possible to estimate the Weber
coefficient within each speed, revealing a dependence of the
Weber coefficient on speed. As mentioned above this Weber-
Speed effect is confounded with the subdivision effect, in which
subdividing a target interval into subintervals can improve tem-
poral precision28,29. Our results suggest that the subdivision effect
may be best reinterpreted as a speed effect. First, in the RNN
model the improvement in precision is clearly an effect of speed
(of the neural trajectory) because, as implemented here, timing is
independent of the behavior of the output unit (e.g., the number
of taps). Second, the subdivision hypothesis predicts a sublinear
relationship between SD and time, yet a goodness-of-fit analysis
revealed that the linear version of Weber’s generalized law gen-
erated better fits (Fig. 6 and Supplementary Fig. 9). We thus
hypothesize that subdivision effects may in part reflect the speed
of the underlying neural trajectories. Specifically, the peak times
of rapidly changing signals are less sensitive to independent noise
than slower signals (Supplementary Fig. 7)44. Future experimental
studies, however, will have to further examine the relationship

between the Weber-Speed and subdivision effects, and whether
the Weber-Speed effect represents a smooth linear transition or
discrete steps reflecting different timing mechanisms.

As with Weber’s law, the Weber-Speed effect raises the ques-
tion of why the nervous system would utilize a timing mechanism
that is inherently better—more precise across trials—when
engaged in a fast vs. a slow motor pattern. Again, the answer
may lie in part in the properties of recurrent circuits. Our
analysis of temporal noise correlations revealed larger and longer
lasting noise covariance in the RRN during slower trajectories
(Supplementary Fig. 10). Additionally, the rate-of-change of a
dynamical system and the effects of noise are inversely related44.
Consider a sinusoidal function at a fast (short period) and slow
(long period) speed in the presence of additive noise. If we were
to count each peak of the wave’s amplitude as a tic of a clock,
additive noise will produce more temporal variance in the
peaks of the slow curve because noise added to a slowly
changing function is more likely to change the times of the
peaks (Supplemental Fig. 7).
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Fig. 7 Temporal scaling relies on parallel neural trajectories at different speeds. a Trajectory of RNN activity at five speeds projected onto the first three
principal components. Right: same data, but only the slowest (blue line) and fastest (red) speeds are plotted to highlight the difference in speed of the two
trajectories. Colored spheres indicate absolute time in each trajectory (100ms between spheres), and reveal the differences in the speeds of the
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The model of temporal scaling presented here makes a number
of experimental predictions. The most important prediction,
that movements executed at higher speeds are more temporally
precise in absolute time, has been tested and confirmed. However,
a number of important questions remain, including whether
simple interval production tasks correspond to executing the
same neural trajectories at different speeds. Two studies indeed
suggest that different intervals are timed by similar neural
patterns unfolding at different speeds4,45. However, no electro-
physiological studies have examined temporal scaling during

the production of aperiodic temporal patterns similar to those
studied here. Additionally, future studies will have to determine
if the improved timing with speed observed here is best
explained by the actual speed of the underlying dynamics or
a subdivision effect.

The model makes a number of additional neurophysiological
predictions. First, electrophysiological recordings during tem-
poral scaling to untrained speeds should produce neural trajec-
tories whose positions on a manifold in high-dimensional space
reflect the speed of the motor pattern. Second, slower trajectories

PC1
PC2

PC3

160

165

170

175

180

S
pe

ed
 in

pu
t a

xi
s

Trajectory PC1

A
ngle (recurrent drive, decay)

= +

Internal
drive

Recurrent
drive

Decay

or
Fast

Slow

Internal drive plane

500 2500 4500

Time (ms)

Projection
onto internal
drive plane

0.5 0.66 1 1.5 2
Speed input

0.5
0.66

1

1.5
T

ot
al

 d
riv

e

2

Speed input

D
riv

e 
co

m
po

ne
nt

s

�

�1

�2

0.5
0.66

1

1.5

2

1

Speed input
Recurrent drive
Decay

Target
Trained
Trained (single speed)
Untrained

0.5 0.66 1 1.5 2

a d

c

b

fe

Fig. 8 Mechanisms of temporal scaling in the RNN. a Magnitude of the instantaneous change in activity (trajectory speed) of the recurrent network (total
drive) scales linearly with speed input value in networks trained at two speeds (green), but not in networks trained at one speed or untrained networks.
Total drive is normalized to the 1× speed. b Decomposing network drive into its three components (recurrent, decay, and input) revealed that the recurrent
and decay components do not individually scale with speed input, thus neither of them in isolation can account for temporal scaling. c To examine the
relationship between the recurrent and decay components separate from the input drive, we projected them onto the internal drive plane, a subspace
orthogonal to the speed input (Methods). d This projection revealed that at faster speeds the angle between the recurrent and decay components
decreases, creating a second-order effect that drives the network activity along the trajectory more quickly. e Network activity projected onto the input axis
and the first principal component of network activity (the dimension which accounts for the largest amount of variance). The colored markers indicate the
angle between the recurrent and decay components. The position along the input axis does not change as a function of time, indicating that speed is
encoded by the position along the input axis. When the speed input level is abruptly decreased partway through the trajectory (black line), the network
switches from fast to slow speeds via an increase in the angle between the recurrent and decay components. f Neural trajectories in the first three principal
components during a mid-trajectory change in speeds. As the dynamics transition from fast to slow (inset), the trajectory (black line) moves along a
hyperplane defined by the parallel trajectories shown in Fig. 6

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07161-6

10 NATURE COMMUNICATIONS |          (2018) 9:4732 | DOI: 10.1038/s41467-018-07161-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


should exhibit larger temporal noise covariance. In other words,
on a trial-by-trial basis, when the population clock reads early at
the beginning of a trajectory that deviation will persist longer if
the trajectory is moving slowly.

While we propose that the model presented here captures
general principles of how neural dynamics account for timing and
temporal scaling, the learning rule used to generate the neural
trajectories driving timing is not biologically plausible. Future
research will have to determine whether such regimes can emerge
in a self-organizing manner. However, because the Weber-Speed
effect was observed across learning rules, we expect it to be a
general property of timing with population clocks (Supplemen-
tary Figs. 5, 6). Additionally, while the model is agnostic to what
parts of the brain generate such patterns, we hypothesize that
similar regimes exist in neocortical circuits characterized by
recurrent excitation.

Overall the current studies support the notion that many
neural computations can be implemented not by converging to a
point attractor46,47, but as the voyage through neural phase
space48–50. And, more specifically, that these trajectories repre-
sent dynamic attractors that can encode motor movements and
are robust to perturbation—that is, they can return to the tra-
jectory after being bumped off8. Here, we show that recurrent
neural networks can exhibit regimes with parallel families of
neural trajectories that are similar enough to drive the same
motor pattern while being traversed at different speeds—
accounting for temporal scaling. These regimes predict that the
temporal precision of motor responses in absolute time is
dependent on speed of execution. This prediction was confirmed
in human timing experiments, establishing a novel psychophy-
sical Weber-Speed effect.

Methods
Temporal scaling of motor patterns in humans. Human psychophysics experi-
ments were performed using a temporal pattern reproduction task43. During the
experiments, the subjects sat in front of a computer monitor with a keyboard in a
quiet room. On each trial, subjects heard a temporal pattern and then reproduced
this pattern by pressing one key on a Cedrus Response Pad™. The target stimulus
consisted of a series of brief tones (800 Hz). After the subjects reproduced the
pattern, a visual representation of the target and of the subject’s response appeared
on the screen along with a score based on the correlation between the target and
the reproduced pattern. Stimulus presentation and response acquisition were
controlled by a personal computer using custom MATLAB code and the Psy-
chophysics Toolbox51. All experiments were run in accordance with the University
of California Human Subjects Guidelines.

To test whether temporal scaling is an innate property of motor behavior,
subjects we trained to produce the Morse code spelling of “time” at 10 words per
minute (Fig. 1). Training occurred over 4 days, with 15 blocks of 15 trials per day.
On the fifth day, subjects were asked to produce the trained pattern at 0.5×, 1.0×,
and 2× the speed under freeform conditions: subjects first completed 15 trials of the
trained pattern, and then were asked to produce the same pattern at the same speed
(1×), twice as fast (2×), and twice as slow (0.5×) in the absence of any additionally
auditory stimuli. Subjects performed five blocks with five trials per speed in a
random order for a total of fifteen trials per block. The subjects were 10
undergraduate students from the UCLA community who were between the ages of
18 and 21. Subjects were paid for their participation.

To test the Weber-Speed prediction of the RNN model (Fig. 5), subjects
performed a temporal reproduction task, wherein they heard a pattern of six tones
(each lasting 25 ms) and were asked to reproduce the timing of the onset of each
tone with a self-initiated start time (representing the first tone). For the 1× speed
the six tones were presented at 0, 325, 1025, 1500, 2400, and 3500 ms. This pattern
was then scaled to five logarithmically distributed speeds: 0.5×, 0.6×, 1×, 1.5×, and
2.0×. Subjects completed four blocks of fifteen trials per speed in a random order. A
pseudo-randomly chosen subset of the subjects were trained to produce the 0.5×
and 2× speeds over eight additional days, consisting of ten blocks of fifteen trials
per speed. The subjects for this study were 25 undergraduate students from the
UCLA community between the ages of 18 and 21 and paid for their participation.

In the periodic/subdivision task (Fig. 6) subjects (n= 11) were trained on a
pattern reproduction tasks in which the four targets consisted of patterns lasting
2.4 seconds divided into subintervals of 300, 400, 600, or 800 ms. Subjects were
trained for 5 days and performed four blocks of twelve trials on each condition
per day. For the aperiodic timing task in Supplementary Fig. 8, subjects (n= 15)
reproduced a pattern of six tones presented at 0, 500, 1600, 1950, 2900, and 3500

ms. This pattern was then scaled to speeds 0.5× and 2.0×. Subjects were trained for
three days with six blocks of fifteen trials per speed presented in a random order.

RNN network equations. The units of the RNNs used here were based on a
standard firing rate model defined by the equations21,26:

τ
dxi
dt

¼ �xiðtÞ þ
XN
j¼ 1

WRec
ij rjðtÞ þ

XI

j¼ 1

WIn
ij yjðtÞ þ φiðtÞ ð1Þ

z ¼
XN
j¼ 1

WOut
j rj ð2Þ

where ri= tanh(xi) represents the output, or firing rate, of recurrent unit i= [1,…,
n]. The variable y represents the activity level of the input units, and z is the output.
N= 1800 is the number of units in the recurrent network, and τ= 50ms is the unit
time constant. The connectivity of the recurrent network was determined by the
sparse NxN matrix WRec, which initially had nonzero weights drawn from a
normal distribution with zero mean and SD g=

ffiffiffiffiffiffiffiffi
Npc

p
. The variable pc= 0.2

determined the probability of connections between units in the recurrent network,
which were drawn uniformly at random, and g= 1.6 represents the gain of the
recurrent network21,52. The NxI input weight matrix WIn was drawn from a
normal distribution with zero mean and unit variance. For all figures, I= 2, except
Supplementary Fig. 2, where additional input units were added to test the speci-
ficity of the network response to untrained cue inputs. One input served as cue to
start a trial and its activity was set to zero except during the time window −250 ≤
t ≤ 0, when its activity was equal to 5.0. The second input unit served as a speed
input and was set to a constant level during the time window −250 ≤ t ≤ T, where T
represents the duration of the trial. Each unit in the recurrent network was injected
with noise current φi(t), drawn independently from a normal distribution with zero
mean and SD 0.05, except for the Weber experiments where the SD was 0.25. The
recurrent units were connected to the output unit z through the Nx1 vector WOut,
which was initially drawn from a normal distribution with zero mean and SD
1=

ffiffiffiffi
N

p
.

Recurrent learning rule. The networks in this study were trained using the Innate
Learning Rule, which trains an initially chaotic recurrent network to autonomously
yet reliably produce an arbitrary activity pattern in the presence of noise8. It is
based on the recursive least squares (RLS) update rule27,53. The recurrent weights
onto unit i were updated every Δt ¼ 5ms as dictated by

WRec
ij tð Þ ¼ WRec

ij t � Δtð Þ � eiðtÞ
X
k2BðiÞ

Pi
jkðtÞrkðtÞ ð3Þ

where B(i) is the subset of recurrent units presynaptic to unit i. The error ei of unit i
is given by

ei tð Þ ¼ ri tð Þ � Ri tð Þ ð4Þ

where ri is the firing rate of unit i before the weight update, and R is the target
activity of that recurrent unit. The square matrix Pi estimates the inverse corre-
lation of the recurrent inputs onto unit i, updated by

Pi tð Þ ¼ Pi t � Δtð Þ � Pi t � Δtð Þr tð Þr′ðtÞPi t � Δtð Þ
1þ r′ðtÞPi t � Δtð ÞrðtÞ ð5Þ

Training procedure. To train a network to perform the temporal scaling task, we
first generated a target pattern of recurrent activity by stimulating the network with
the cue input and capturing the dynamics generated according to Eq. (1) over 2000
ms in the presence of speed input level ySI= 0.3 and zero noise (similar results are
obtained if the target pattern is harvested in the presence of noise). We then
produced a temporally dilated version of this target by linearly interpolating by a
factor of four to produce a second scaled version of the target with a duration of
8000 ms. For Fig. 3 and later, the recurrent network was then trained with random
initial conditions and noise amplitude 0.05 according to the algorithm described in
Eqs. (3–5). The fast target (2× speed) was trained over the window t∈[0,2000] with
ySI= 0.3 and the slow target (0.5× speed) over the window t∈[0,8000] with ySI=
0.075. Ten differently seeded networks were each trained for a total of 60 trials
alternating between fast and slow targets. A similar procedure was used to train
networks at a single speed (Fig. 2). The initial target was captured with a duration
of 4000 ms and ySI= 0.15 and zero noise. The same initial networks used in the
temporal scaling task were trained at this speed for 30 trials. To emulate a rest state
all networks were trained to maintain zero r (firing rate) for 30 s following the end
of each trained recurrent target. We dubbed networks trained in this manner gated
attractor networks because they only entered the long-lasting dynamic attractor in
response to a specific cued input (Supplementary Fig. 2).

After recurrent training was complete, the output unit was trained, only at the
fastest trained speed, to produce a target function of a series of 5 Gaussian peaks
(taps) centered at 163, 513, 750, 1200, and 1750 ms (0.5× speed). The training
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algorithm for the output weights was similar to that used for recurrent training, as
described above.

Analysis of temporal scaling. To assess the ability of a network to generalize its
activity to novel speeds, i.e. temporally scale, we tested the response of networks to
a range of speed input levels after training was completed (weights were no longer
modified). The network was set to a random initial state at t=−750 and given the
trained cue input during t∈[−250,0]. The test speed input was delivered starting at
t=−250 for a duration lasting 20% longer than when a perfectly timed last tap
would occur. The timing of these peaks was used to measure the accuracy of the
network’s temporal scaling using a speed factor and scaling index. The speed factor
was a coarse measure of temporal scaling calculated by dividing the final peak time
of twenty test trials at each speed to the mean peak time at the 1× speed, and taking
the mean across trials. The quality of temporal scaling (the scaling index) was
calculated by taking the fisher-transformed correlation of the mean timing of the
response time for each speed with the mean pattern of the 1× speed.

Weber analysis. The Weber analysis was performed according to Weber’s Gen-
eralized Law36,54, which defines a relationship between mean and variance of
perceived time as:

σ2 ¼ kT2 þ σ2independent ð6Þ

where σ2 is the variance and T represent the mean of a given tap time. We define
the slope k as the Weber coefficient, and σ2independent is the time independent source
of variance—sometimes referred to as motor variance. We measured k indepen-
dently at each speed, by performing a linear fit on the measured mean and variance
of the five response times at that speed (peak times for the RNN in Fig. 4 and
button presses for psychophysics experiments). Note that for visualization pur-
poses, in some plots we show the linear fit of the standard deviation by the mean
time.

To test the subdivision hypothesis (Fig. 6), we additionally fit each subject’s
responses according to:

σ2Subd Tð Þ ¼ k
X

t2i þ σ2independent ð7Þ

where ti is the average interval between response i and the preceding response. It is
important to note that this fit approach was very liberal, because the stronger
prediction of the subdivision hypothesis is that it would be possible to fit all the
speeds of a subject with a single Weber coefficient—whereas we used different
Weber coefficients for each speed (when a single Weber coefficient was used for all
speeds the fits were much worse and often did not converge). We then calculated
the goodness of fit for both the subdivision and continuous (speed-effect) fits by
finding the Fisher-transformed coefficient of determination (r2) between the
predicted variance at each tap time and the measured variance.

RNN trajectory analysis. To analyze the position of the trajectories in relationship
to one another, we tested the networks at each speed without noise. We then
concatenated the active period of the trajectory at each speed, defined as the
window between cue input offset and speed input offset, and performed PCA on
these concatenated trajectories. We used the PCA coefficients to transform the
individual trajectory at each speed for visualization in Fig. 7a. To measure the
relationship between trajectories, we returned to full (N= 1800) neural phase space
and measured the Euclidean distance between the slowest (0.5× speed) trajectory
and the trajectories at each speed, at all pairs of points in time. This produced one
ttest × t0.5x distance matrix per speed, as seen in Fig. 7b for test speed 2×. To
confirm that the trajectories did not cross and followed a similar path, for each
point on the slowest trajectory we found a corresponding point on the test tra-
jectory that was closest to it. This produced a vector of approximately 8000 distance
values (for each millisecond of the slowest trajectory) which we plotted in Fig. 7c
for each of the five tested speeds. The distances were fairly constant for each test
speed and never reached zero, indicating that the trajectories did not intersect. We
also recorded the points ttestmin along the test trajectory where these minima occurred,
allowing us to assess the relative speed of each trajectory along their entire length.
For example, when the slowest trajectory is at its 400 ms mark, if a test trajectory is
closest to it at the test trajectory’s own 100ms mark, this would indicate that at that
moment, the slowest trajectory was moving four times slower than the test tra-
jectory. We plotted ttestmin for each of the five tested speeds in Fig. 7d.

Recurrent-decay-input subspace decomposition. In Fig. 8, the total drive

ðdxðtÞdt ; Equation 1Þ was decomposed into its three components: (1) synaptic decay
DSðtÞ ¼ � 1

τ xðtÞ
� �

; (2) recurrent synaptic drive RSðtÞ ¼ 1
τW

RecrðtÞ� �
; and its

external component, the tonic speed input ISðtÞ ¼ 1
τW

InyðtÞ� �
. The magnitude of

each of these components was calculated as the time-averaged L2-norm of the
corresponding population vectors. Figure 8c illustrates the generation of an
orthonormal basis set {is, ds, rs} for the total drive at time t, which was computed

by applying the Gram-Schmidt orthonormalization process as follows:

is ¼ ISðtÞ
ISðtÞk k ð8Þ

ds ¼ DS tð Þ � DS tð Þ′isð Þis
DS tð Þ � DS tð Þ′isð Þisk k ð9Þ

rs ¼ RS tð Þ � RS tð Þ′isð Þis� RS tð Þ′dsð Þds
RS tð Þ � RS tð Þ′isð Þis� RS tð Þ′dsð Þdsk k ð10Þ

Here, ||.|| represents the L2-norm and the apostrophe represents the vector
transpose operation. Collectively, these unit orthonormal vectors fully describe the
total drive and its components at t, and therefore, form a basis set for these vectors.
The plane described by the basis set {ds, rs} is denoted the internal drive plane, with
DS(t) projected onto this plane in gray, and RS(t) in yellow. In Fig. 8d, we visualize
the relationship between these vector projections over a short sequence of time
steps along the slow and fast trajectories, on a common internal drive plane. For
this, we constructed a common orthonormal set by applying the Gram-Schmidt
process to the sequence-averaged component vectors. While doing so precludes the
orthonormal set from forming a basis for the vector sequences, restricting the
length of these sequences to a small fraction of the network unit time constant (τ),
renders the information loss negligible. Finally, in Fig. 8e, to show that the
trajectories consistently encode their desired speeds, we plot the projection of the
state variable (x(t)) onto is, against its projection onto the first principal
component in the subspace orthogonal to is. That is, the x-axis represents the first
principal component of (x(t)− (x(t)′is)is).

Temporal noise analysis. In Supplementary Figs. 4 and 10, we evaluated temporal
noise statistics of the RNN trajectories to determine the basis of their adherence to
Weber’s law. The temporal noise within a trajectory during trial k, rk, was calcu-
lated relative to the trial-averaged trajectory at the corresponding speed, r. Speci-
fically, the temporal noise within rk relative to rðtÞ was calculated as ηk(t)= t− t′
where rk(t′) was the point along rk closest to rðtÞ. Since measurements showed that
the temporal noise within the trajectories exhibited a time-varying standard
deviation (i.e. it was non-stationary, Supplementary Fig. 4b), the auto-correlation
between the temporal noise at time points s and t was calculated as:

1
K

PK
k¼1 ηk tð Þ � μη tð Þ

� �
ηk sð Þ � μη sð Þ

� �

σηðtÞσηðsÞ
ð11Þ

where μη(t) and ση(t) symbolize the sample mean and standard deviation of the
temporal noise at time t. However, since the mean temporal noise did not vary with
time, the auto-covariance at lag τ was calculated as:

XK

k¼1

ηk tð Þ � μη

� �
ηk t þ τð Þ � μη

� �
ð12Þ

Control networks. We trained five control RNNs using Hessian-free
optimization24,25 to produce the same aperiodic output pattern as RNNs trained
using the innate learning rule, at the 0.5× and 2× speeds. These networks were
defined by:

τ
dxi
dt

¼ � xiðtÞ þ
XN
j¼1

WRec
ij rjðtÞ þ

XI

j¼1

WIn
ij yj tð Þ þ bxi þ φi tð Þ ð13Þ

z ¼
XN
j¼1

WOut
ij rj þ bz ð14Þ

where network size is N= 300 and ri= tanh(xi) is the firing rate of recurrent unit i
= [1,…,N]. As in the innate learning RNNs, there was a cue and speed input, and
Gaussian noise φi(t) drawn from a normal distribution with SD 0.25. The Hessian-
free learning algorithm adjusts the recurrent weights WRec by backpropagating the
error in the output unit during a trial across WRec, defined as ei(t)= z(t)− Z(t),
where Z is target output activity. Training resulted in the modification of bias terms
bx and bz, and the weight matrices WIn, WRec, and WOut. In this study, WRec was
fully connected, unlike the sparsely connected RNNs used elsewhere. Networks
trained for the simplified output target in Supplementary Fig. 6e, f had network size
N= 100. Other parameters were the same as in the innate learning studies. The
code used to train these networks was based on Dr. David Sussillo’s Hessian-free
optimization implementation in MATLAB available at: https://github.com/sussillo/
hfopt-matlab.

We also trained three Echo State Networks26,27 (ESNs) to produce a sinusoidal
outputs (ESN’s are not well-suited to produce long aperiodic patterns) at three
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different frequencies: 5, 10, and 15 Hz. ESNs have a similar architecture, except
there is feedback from the output unit to the recurrent units. These networks were
governed by the equations:

τ
dxi
dt

¼ �xiðtÞ þ
XN
j¼1

WRec
ij rjðtÞ þWIn

i y tð Þ þWFB
i zðtÞ þ φiðtÞ ð15Þ

z ¼
XN
j¼1

WOut
ij rj ð16Þ

which are the same as those of the innate learning RNNs, but with the additional
feedback term WFB

i defining the weight of the feedback from output z onto
recurrent unit xi. The networks size was set to N= 300, andWFB was drawn from a
uniform distribution on the open interval (−1, 1) and delivered feedback to each
unit in the recurrent network. As before,WIn andWOut were drawn from a normal
distribution with zero mean and unit variance for WIn and SD 1=

ffiffiffiffi
N

p
for WOut.

Recurrent weights WRec were drawn from a normal distribution with zero mean
and SD g=

ffiffiffiffiffiffiffiffi
Npc

p
, with gain g= 1.2 and connection probability pc= 0.2. These

networks were trained by modifying the weights onto the outputs units to match
the output target Z based on the error term ei(t)= z(t)− Z(t)(using the FORCE
algorithm27). During training and testing, the networks received a single input I of
amplitudes 1.2, 1, or 0.8 which determined the target output frequency, with higher
amplitudes corresponding to higher frequency.

Data availability
Data and code used to generate the main simulation in this manuscript will be
made available upon request, or code can be downloaded from: https://github.com/
nhardy01/RNN.
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