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SUMMARY

Telling time and anticipating when external events
will happen is among the most important tasks the
brain performs. Yet the neural mechanisms under-
lying timing remain elusive. One theory proposes
that timing is a general and intrinsic computation of
cortical circuits. We tested this hypothesis using
electrical and optogenetic stimulation to determine
if brain slices could ‘‘learn’’ temporal intervals. Pre-
sentation of intervals between 100 and 500 ms
altered the temporal profile of evoked network activ-
ity in an interval and pathway-specific manner—sug-
gesting that the network learned to anticipate an
expected stimulus. Recordings performed during
training revealed a progressive increase in evoked
network activity, followed by subsequent refine-
ment of temporal dynamics, which was related to
a time-window-specific increase in the excitatory-
inhibitory balance. These results support the hy-
pothesis that subsecond timing is an intrinsic
computation and that timing emerges from network-
wide, yet pathway-specific, changes in evoked neural
dynamics.

INTRODUCTION

Discriminating a quarter musical note from a half note, or pro-

ducing the finely timed motor patterns necessary to tap a Morse

codemessage are but two examples of the brain’s sophisticated

ability to tell time on the subsecond scale (Ivry and Spencer,

2004; Mauk and Buonomano, 2004; Buhusi and Meck, 2005).

This ability allows animals to predict and anticipate when events

will occur (Medina et al., 2000; Coull and Nobre, 2008; Merchant

et al., 2013). For example, we can anticipate the onset of the next

note of a song, and this ability is learned in an experience-depen-

dent manner.

Despite the importance of timing and temporal information in

sensori-motor processing and learning, we remain largely igno-

rant of how neural circuits encode the duration and intervals of

temporal events. Based on psychophysical and pharmacolog-
ical data, it is most likely the case that there are multiple neural

mechanisms that code for temporal structure of sensory events

since they are timed over a broad range of timescales, ranging

from microseconds to days (Mauk and Buonomano, 2004;

Buhusi and Meck, 2005). In this study we are focused on un-

derstanding the neural mechanisms in cortical networks that

encode time in the subsecond range.

Traditionally, there have been two broadly defined opposing

theories of how the brain tells time, namely, dedicated and

intrinsic models (Ivry and Schlerf, 2008). Dedicated models pro-

pose that timing relies on specialized and centralized neural

mechanisms, whereas intrinsic models suggest that timing is a

general computation that most neural circuits can perform. A

strong test of the intrinsic hypothesis is that even cortical cir-

cuits in vitro, might be able to tell time, and even ‘‘learn’’ simple

temporal patterns. Several studies have suggested that in vitro

circuits can, indeed, perform analogs of certain computations,

including timing (Johnson et al., 2010; Chubykin et al., 2013)

and pattern recognition (Hyde and Strowbridge, 2012; Dranias

et al., 2013; Ju et al., 2015). Such in vitro approaches offer a

powerful strategy to understand network-level computations in

a reduced system—thus unambiguously determining that the

learning is occurring in, and constrained to, the local network.

Here, using a novel protocol consisting of electrical and optoge-

netic stimulation, we examined how temporal interval learning

emerges from local network dynamics and provide some of the

first evidence for the network mechanisms involved.

Our results demonstrate that organotypic cortical slices

exhibit temporally specific network plasticity wherein internal

dynamics is modified to reflect the trained temporal interval.

This plasticity is network-wide and relies in part on temporally

selective alterations in the balance of excitation-inhibition.

Furthermore, our results suggest that the effects of training are

manifested in the development and establishment of repro-

ducible neural trajectories. Our results provide strong support

for the hypothesis that timing and temporal processing (on the

subsecond scale), are computations that are intrinsic to local

neural networks.

RESULTS

Cortical organotypic slices were chronically ‘‘implanted’’ with

a stimulating electrode (Johnson and Buonomano, 2009) and

transfected with an adeno-associated virus (AAV) expressing
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Figure 1. The Temporal Profile of Network Activity Is Dependent on Training Interval

(A) Slices were trained for 4 hr by pairing electrical stimulation of the paired (Pr) pathway followed by optical stimulation, at an interval of either 100 ms (top left

panel), 250 ms (middle), or 500 ms (right). Inset: schematic of implanted electrodes and recording site. Five traces from a cell in each group in response to the

Pr pathway after training (bottom panels).

(B) Raw data across all cells and trials (5 traces from each cell) from the 100 (left panel), 250 (middle panel), and 500 ms (right panel) groups. Voltagegram traces

are normalized to their own peak and sorted according to latency of the first polysynaptic peak (i.e., the first peak after the initial response) if present. Voltage is

represented on a color scale where black is the minimum and white the maximum. Arrows represent the time of the test stimulus, and dashed lines are presented

to provide a better comparison of the timing across different panels.

(C) Mean ± SEM (shading) of all traces (that exhibited polysynaptic activity) from the three training-interval groups. Arrows indicate the time of light delivery during

training. Note that the timing of the polysynaptic peak in each waveform increases with the training interval.

(D) Cumulative distributions of polysynaptic event times.

(E) The group means of median polysynaptic event times of each cell.
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ChR2-EYFP (see Figure S1 available online). Whole-cell record-

ings from L-II/III pyramidal neurons revealed a range of light-

evoked responses, including subthreshold depolarization and

spikes (Figure S1D). Slices transfected with ChR2 underwent

an interval training protocol in which electrical stimulation was

paired with optogenetic stimulation. This novel training protocol

allowed us to record from neurons that were directly optically

stimulated during training. The interval between electrical stimu-

lation (the paired pathway, Pr) and the light pulse was either 100,

250, or 500 ms (Figure 1A). Electrical stimulation consisted of

100 Hz burst of 5 pulses, and optical stimulation was a 25 ms

flash of light. After 4 hr of training (720 pairings of electrical
2 Neuron 91, 1–8, July 20, 2016
and optical stimulation), whole-cell recordings were performed

from layer II/III ChR-positive (ChR+) pyramidal neurons (we are

defining cells as ChR+ based on their direct responsivity to light).

To determine if training shaped the timing of network activity,

evoked responses to electrical stimulation alone were recorded.

Consistent with previous studies in naive slices, electrical stimu-

lation elicited an isolated monosynaptic EPSP, or a monosyn-

aptic EPSP followed by polysynaptic activity (Johnson and

Buonomano, 2007). Polysynaptic activity is the result of indirect

activation of neurons in the network due to intrinsic network dy-

namics of recurrent cortical networks. This polysynaptic wave-

form obtained from whole-cell recordings provides a natural
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readout of network activity (Buonomano, 2003). Figure 1B shows

the normalized voltagegrams from all test trials across all cells

(n = 21/12, 25/14, and 18/10 cells/slices in the 100, 250, and

500 ms groups, respectively). The differences in the slope of

the diagonal band of the voltagegrams suggest that the timing

of the network activity was dependent on the Pr-light interval

the slice experienced during training, thus indicating that the

network activity evoked by the same stimulus differed across

groups. Averaging across all the traces in which polysynaptic

activity was present revealed that, despite the significant trial-

by-trial variability of evoked polysynaptic activity (Buonomano,

2003; Luczak et al., 2007; Sadovsky and MacLean, 2014), there

were differences in the averaged traces (Figure 1C). To quantify

the differences in the temporal structure of the activity, we exam-

ined the distribution of times of the polysynaptic events (Fig-

ure 1D). There was a significant difference between the three

groups: the distribution was progressively right shifted (longer)

with the increasing training intervals (100 3 250, p = 10�23;

250 3 500; K-S test, p = 0.007). The median time of the evoked

polysynaptic events in each cell was also significantly different

(Figure 1E): the mean median latencies were: 98 ± 18, 203 ±

22, and 279 ± 27 ms for the 100, 250, and 500 ms groups,

respectively (Kruskal-Wallis test, c2
2,54 = 24.9, p = 3.9*10�6;

Mann-Whitney test between Pr 100 and Pr 250, p = 10�4;

Pr 250 versus Pr 500 p = 0.03). There was no difference in the

intrinsic electrical properties of cells across groups (Supple-

mental Experimental Procedures).

Training-Dependent Changes in Network Activity Are
Pathway Sensitive
The robust difference in the evoked temporal dynamics as a

function of the training interval demonstrates that the tem-

poral profile of activity within a circuit adapts to the temporal

structure of the stimuli it was exposed to. Such temporal learning

effects could arise from either cellular or network mechanisms

(Mauk and Buonomano, 2004). Cell-autonomous mechanisms

include those in which timing can be attributed to changes in

cellular or synaptic time constants (Margoliash, 1983; Saitoh

and Suga, 1995; Fiala et al., 1996; Hooper et al., 2002). A network

mechanism would include one in which timing emerges from the

intrinsic dynamics of recurrent circuits—e.g., a changing pattern

of neural activity (Mauk and Buonomano, 2004; Buonomano and

Laje, 2010).

As a first step toward addressing whether this temporally

specific plasticity is most consistent with a cellular or network

mechanism, we examined if the training-dependent changes

in timing were pathway specific. In these experiments, slices

were implanted with two stimulating electrodes. One of the

electrodes delivered electrical stimulation that was paired with

optical stimulation at an interval of 100ms (Pr pathway). The sec-

ond electrode was activated 5–10 s after electrical stimulation

from the Pr electrode andwas not followed by optical stimulation

(unpaired pathway, Np) (Figure S2A). Recordings made from

ChR+ neurons following 2–4 hr of training revealed significant

pathway-sensitive differences. The voltagegrams of the activity

elicited by the Pr and Np pathways appeared qualitatively

different (Figure S2B). This was confirmed by multiple mea-

sures: differences in the distribution of polysynaptic event times
(Figure S2C, K-S test, p = 10�7), median time of evoked polysyn-

aptic events (Figure S2D, Pr 100, 192 ± 24 ms; Np 100, 288 ±

35 ms, Mann-Whitney test, p = 0.02), and the likelihood of elicit-

ing network activity (Figure S2E)—specifically the mean number

of polysynaptic events per cell elicited by the Pr and Np path-

ways was 1.72 ± 0.3 and 0.95 ± 0.2, respectively (Mann-Whitney

test, p = 0.002, n = 40 cells). Thus training resulted in a form of

in vitro pathway-sensitive learning, in which the Pr pathway

was more likely to elicit polysynaptic activity, and the timing of

this activity was closer to the trained interval as compared to

the Np pathway.

Temporally Specific Plasticity Is Expressed
Network-wide
We reasoned that cell-autonomous timing mechanisms would

bemore likely to be constrained to those cells directly stimulated

by light, whereas network mechanisms would likely alter the

activity patterns of both ChR+ and ChR�. We thus examined

the evoked responses in simultaneously recorded ChR+ and

ChR� neurons after training with a 100 ms interval. Representa-

tive traces from ChR+ (blue traces) and ChR� (black traces) pairs

from a single experiment indicate that the temporal profile of

both populations of cells are similar—for example, note the

prominent polysynaptic peak around 100 ms in both the blue

and black traces (Figure 2A). Group data reveal a similar distribu-

tion in evoked neural trajectories in both ChR+ and ChR� cells as

quantified by the lack of significant difference in the temporal

distribution of the evoked polysynaptic event times between

ChR+ and ChR� neurons (K-S test, p = 0.95) (Figure 2B), as

well as of the mean polysynaptic event times across cells (two-

way ANOVA, repeated-measures on cell and pathway factors;

cell factor, F1,94 = 0.16, p = 0.69) (Figure 2C). But there was,

again, a difference in the mean median times of events evoked

by the Pr and Np pathways (Kruskal-Wallis test, c2
1,96 = 6.07,

p = 0.01).

The simultaneous recording of ChR+ and ChR� neurons also

allowed us to ask if there was a difference in the between neuron

correlation of the PSPwaveforms evoked by the Pr and Np path-

ways. One hypothesis is that training results in a differential

‘‘burning in’’ of the patterns of neural activity elicited by the Pr

compared to the Np pathway—and thus that the activity be-

tween neurons would be more correlated when evoked by the

Pr pathway. Indeed the mean cell correlations between ChR+

and ChR- cells were higher in response to activity evoked by

Pr compared to the Np pathway (Fisher-transformed r values

of 1.28 ± 0.08 (Pr pathway) and 1.11 ± 0.08 (Np pathway); paired

t test, t = 2.6, p = 0.02). A concern with this analysis is that the

differences in correlations could be a result of overall differences

in activity, e.g., the correlation in the Np pathway could be

smaller because it elicited less polysynaptic activity. Thus, we

also compared the correlations calculated by shuffling across

cells. There was no significant difference in the mean shuffled

ChR+/ChR� correlations between the Pr and Np pathways, indi-

cating that the difference between pathways was not produced

by differences in overall activity (Figure 2D). A cell-autonomous

timing mechanism would be more likely to generalize across

pathways and less likely to generalize to the ChR� cells. Thus

the pathway sensitivity together with the lack of cell specificity
Neuron 91, 1–8, July 20, 2016 3



Figure 2. Simultaneous Recording of ChR+ and ChR– Cells Suggests that Temporally Specific Plasticity of Neural Dynamics Is Network-wide

(A) Slices were trained with a 100 ms interval. Sample traces from the same simultaneously recorded ChR+ and ChR� cells in response to Pr (left) and Np (right)

pathway. Inset: schematic of implanted electrodes and recording site. Blue shading indicates the time window in which optical stimulation occurred during

training.

(B) Voltagegrams of Pr evoked responses recorded simultaneously from ChR+ (left panel) and ChR- cells (right panel). Traces in both panels are sorted according

to first polysynaptic event in the ChR+ cells. Middle panel: cumulative distribution of event times from the Pr pathway between the ChR+ and ChR� cells.

(C) Average median event times of ChR+ and ChR� cells.

(D) Mean correlation coefficients of the activity between the ChR+ and ChR� cells in response to the Pr (blue) and Np (cyan) pathways. There was no significant

difference in correlation between pathways when the data were shuffled (ShPr and ShNp; see Supplemental Experimental Procedures).
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is suggestive of a network-based timing mechanism. Further-

more, it is important to note that the shallower angle of the

diagonal band of the voltagegrams from the 100 to 500 ms

groups (Figure 1B) is also expected from a network basedmech-

anism: for a cell to exhibit a large polysynaptic response at

250 ms, a presynaptic neuron must fire shortly before, say at

240 ms, and for this cell to fire at 240 ms, another neuron would

have to fire at 230 ms, and so forth. And finally, it would be diffi-

cult to account for the pathway-specific increase in the correla-

tion of network activity in response to the Pr pathway, if learning

was based on cell autonomous mechanisms. Nevertheless, it

was unexpected that there was no difference between the tem-

poral profile of activity in ChR+ and ChR� neurons. It is possible

that this is because within a recurrent network light will indirectly

depolarize ChR� neurons.

Reproducible Neural Trajectories Emerge over the
Course of Training
A timing mechanism based on the internal dynamics of a recur-

rent network requires that electrical stimulation elicit polysyn-

aptic activity—i.e., neurons monosynaptically (or antidromically)

activated by electrical stimulation must produce suprathreshold

activity in other neurons in the network, leading to further self-

perpetuating activity for a period of a few hundred milliseconds.

We routinely observed that naive slices were much less likely

than trained slices to exhibit any evoked polysynaptic activity.

Hence we next examined how network activity and timing

emerged over the course of a training session. Training was

performed on the rig while recording in cell-attached mode to

monitor neurons over hours and avoid intracellular dialysis. Two

groups of slices were trained on intervals of 100 and 500ms (Fig-

ure 3A). In both groups the majority of neurons did not exhibit

evoked spikes in response to the Pr pathway before training

(Pre); but tests at 1 and 2 hr into training revealed a progressive

increase in polysynaptically evoked spikes (Figure 3B; training-

time effect, Friedman test, F2,156 = 24.8, p = 10�6). The increase

in polysynaptic activity was restricted to the first hour of training,

followed by a progressive refinement in the timing of the spikes

over the second hour of training, as indicated by a significant

difference in the median spike times between the 100 and

500 ms groups at 2 hr (Figure 3C; 100 ms group, 231 ± 34 ms;

500 ms group, 359 ± 59 ms; t test, p = 0.008), but not at 1 hr.

This training-dependent temporal refinement was absent in

spikes elicited by the Np pathway (data not shown).

In a separate set of experiments, slices were stimulated with

electrical stimulation alone or similar to previous experiments

electrical stimulation was paired with optical stimulation at

250 ms. In both groups, evoked activity elicited similar levels of

polysynaptic activity. However, there was a significant differ-

ence in the timing of this activity (Figures S3C and S3D).

Together these results suggest that over the course of training,

electrical stimulation increases network activity, which can be

later refined by optical stimulation.

Mechanisms of Temporally Specific Plasticity
The progressive increase in polysynaptic activity over the course

of training could arise from a number of mechanisms including

decreased inhibition or increased excitation. Analysis of the
light-evoked responses during training in our cell-attached data

suggested that the increase in network activitywas in part a result

of a decrease in evoked inhibition. Specifically, in many cells the

light pulse by itself elicited spikes in the cell-attached recordings;

but at the beginning of training, there was a dramatic decrease

in the probability of light evoked spikes (Figure 3D; Friedman

test, Q3,39 = 9, p = 0.0006, n = 16)—presumably as a result of

electrically evoked inhibition. Over the course of training, how-

ever, the likelihood of light-evoked spikes increased, raising the

hypothesis that an initial step in learning was a nonspecific

decrease in inhibition.

A nonspecific decrease in inhibition is unlikely to account for

the temporal specificity observed in Figure 1. Thus we examined

the dynamic changes in the balance of excitation and inhibition

by clamping cells at�53 mV or 10 mV, to estimate the excitatory

and inhibitory currents, respectively. This approach, however,

requires comparing the mean excitatory and inhibitory currents

estimated on different trials and thus benefits from trials with

less variability and fewer failures (no polysynaptic activity eli-

cited). Since the above results indicated that a decrease in inhi-

bition is important for the generation of polysynaptic activity, we

trained slices on a 250 ms interval in the presence of a low dose

(200 nM) of the GABAB antagonist CGP-55845. The use of a

GABAB antagonist provided a means to increase network ac-

tivity (Scanziani et al., 1994; Mann et al., 2009) without directly

blocking GABAA receptors—which are critical to the standard

measures of the balance of excitation and inhibition (Xue et al.,

2014). CGP-55845 resulted in more consistent polysynaptic

response, but as expected also prolonged the mean peak times

(Figure S4). The E/I balance was quantified in response to both

the Pr and Np pathways during three time windows: before

(50–150 ms), during (150–350 ms), and after (350–550 ms)

the 250 ms training interval (Figure 4). A two-way ANOVA

(repeated-measures) revealed that the E/I ratio between the Pr

and Np pathway was similar before and after the target interval

but enhanced around the training interval in response to the Pr

pathway (interaction effect, F2,50 = 4.53, p = 0.016). Thus it was

not only that the training altered the E/I balance, but the E/I bal-

ance was dynamic, increasing around the trained window.

DISCUSSION

Consistent with two previous in vitro studies, these results

demonstrate that the activity profiles of neurons adapt to the

temporal structure of previously presented stimuli (Johnson

et al., 2010; Chubykin et al., 2013). By using an optogenetic

approach, we were able to examine how this learning emerges

over training and show that the learning generalized to ChR�

cells—establishing that temporal learning is a network-wide

phenomenon, even though the timing is pathway specific. Previ-

ous computational results suggest that changes in the dynamics

of recurrent neural networks require orchestrated plasticity at

multiple loci, such as plasticity at excitatory and inhibitory syn-

apses governed by different rules (Lazar et al., 2009; Liu and

Buonomano, 2009; Vogels et al., 2011). With this caveat in

mind, we provide evidence that the temporally specific plasticity

of network dynamics engages changes in inhibition, including a

window-specific increase in the E/I balance, and furthermore,
Neuron 91, 1–8, July 20, 2016 5



Figure 3. Emergence of Interval-Specific Network Dynamics during the Course of Training
Sliceswere trainedwith either a 100 (left) or 500 (right) ms interval on the rig. Activity wasmonitored during training using cell-attached recordings. Each line of the

plot represents the Pr-pathway evoked spikes of a cell as a PSTH (normalized and sorted within each panel) see Supplemental Experimental Procedures). (A1)

Pr-evoked responses before the start of training (Pre). Middle panel shows sample traces from a single cell included in the PSTH (row 4) (A2) Pr-evoked responses

after 1 hr of training (post 1 hr). Middle panel: cumulative distribution of maximum peak of PSTH for the 100 versus 500ms trained group at the 1 hr time point (K-S

test, p = 0.04). (A3) Evoked responses after 2 hr of training (Post 2hr). Inset: K-S test, p = 0.002.

(B) Number of polysynaptic spikes evoked by the Pr pathway in the 100 ms and 500 ms trained group.

(C) Group means of the median polysynaptic spike times of each cell.

(D) Increase in light evoked spike probability during training. The first point (LE) is the probability of light alone eliciting a spike before training. Subsequent points

reflect the probability of a light evoked spike during training trials (i.e., light preceded by electrical stimulation). Note that between the 350–359 and 370–379 trials

there was a testing block.
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that nonspecific decreases in inhibition can enhance temporal

learning. These results provide evidence that networks have

the ability to not only modulate E/I balance over long time frames
6 Neuron 91, 1–8, July 20, 2016
(Froemke et al., 2007; Sun et al., 2010; Xue et al., 2014), but to

‘‘learn’’ to dynamically shift the E/I balance within specific win-

dows over the course of hundreds of milliseconds.



Figure 4. Interval-Specific Shifts in the Balance of Excitation-

Inhibition
(A and B) Slices were trained with a 250 ms interval for 4 hr and whole-cell

recordings were obtained in voltage clampmode. Sample traces of Pr/ChR+

(A) and Np/ChR+ (B) evoked responses to a single test pulse following

training. IPSCs are shown in red and EPSCs in blue. Gray shading indicates the

time window (150–350 ms) around the trained interval of 250 ms.

(C) E/I ratio at 3 different time windows (50–150 ms, 150–350 ms, 350–550 ms)

for the Pr/ChR and Np/ChR responses.
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Theories of Timing
As mentioned above, efforts to understand the neural mecha-

nisms of timing, have led to two general classes of timing

models: dedicated and intrinsic. The prototypical example of a
dedicated model, the internal clock (Creelman, 1962; Gibbon,

1977), proposes that timing relies on a centralized (Ivry and

Schlerf, 2008) neural integrator that counts the events of a neural

pacemaker. In contrast, intrinsic models propose that timing is

a local and general computation. Intrinsic models argue that

because order, interval, duration, and temporal structure are

fundamental to most forms of neural computation, cortical

circuits evolved in part to process temporal information on the

subsecond scale. This view has received support from psycho-

physical (Johnston et al., 2006; Burr et al., 2007; Karmarkar and

Buonomano, 2007; Bueti et al., 2012) and in vivo (Shuler and

Bear, 2006; Sumbre et al., 2008; Chubykin et al., 2013) studies,

suggesting that timing is a general and local, i.e., intrinsic,

computation.

We suggest that the temporally specific plasticity of neural

dynamics described here can indeed be considered an example

of in vitro learning because the previous ‘‘experience’’ of the

circuit does not simply alter the subsequent ‘‘behavior’’ of the

circuit but does so in a computationally relevant manner: in a

sense, the activity predicts the expected time of the optical

stimulus. Such, in vitro learning approaches will be critical to

elucidate how computations emerge from local neural circuits.

First, in vitro networks provide absolute control over the external

sensory experience of the circuits. Second, in contrast to timed

neural responses observed in vivo, we can be sure that the

observed timing is produced within the circuit being studied,

as opposed to a reflection of computations performed in other

brain areas, thus allowing us to provide strong support for the

intrinsic model of timing and the first insights into the underlying

mechanisms. A potential mechanistic explanation of our results

is that temporal pattern learning develops in two stages. First,

electrical stimulation results in the emergence of evoked but

nonspecific time-varying neuronal activity. Second, optical stim-

ulation acts as a ‘‘teacher’’ further depolarizing neurons and

potentiating inputs active during that window—thus refining

the temporal PSP profile of some neurons.

Of course, this study does not provide direct evidence that the

forms of network plasticity observed here contribute to behav-

ioral temporal learning. However, the use of a training paradigm

that parallels behavioral experiments and addresses timing

specificity demonstrates that the computational machinery

necessary to capture the temporal structure of external stimuli

is in place in local cortical circuits. Furthermore, we provide the

first mechanistic insights as to the network mechanisms under-

lying this ability. But our results also highlight the challenges

that lie ahead in terms of understanding the plasticity of network

dynamics within cortical microcircuits. Specifically, it seems un-

likely that the learning can be attributed to any specific synapse

class, and rather that the dynamic changes in E/I balance rely on

plasticity at select subgroups of different classes of synapses

embedded within complex recurrent circuits.
EXPERIMENTAL PROCEDURES

All animal procedures followed the National Institutes of Health (NIH) guide-

lines, and were approved by the UCLA Institutional Animal Care and Use

Committee (IACUC). Experimental procedures and details of statistical tests

performed are available in Supplemental Experimental Procedures.
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