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Influence of the interstimulus interval on
temporal processing and learning: testing

the state-dependent network model
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The ability to determine the interval and duration of sensory events is fundamental to most forms of
sensory processing, including speech and music perception. Recent experimental data support the
notion that different mechanisms underlie temporal processing in the subsecond and suprasecond
range. Here, we examine the predictions of one class of subsecond timing models: state-dependent
networks. We establish that the interval between the comparison and the test interval, interstimulus
interval (ISI), in a two-interval forced-choice discrimination task, alters the accuracy of interval
discrimination but not the point of subjective equality—i.e. while timing was impaired, subjective
time contraction or expansion was not observed. We also examined whether the deficit in temporal
processing produced by short ISIs can be reduced by learning, and determined the generalization
patterns. These results show that training subjects on a task using a short or long ISI produces
dramatically different generalization patterns, suggesting different forms of perceptual learning are
being engaged. Together, our results are consistent with the notion that timing in the range of
hundreds of milliseconds is local as opposed to centralized, and that rapid stimulus presentation rates
impair temporal discrimination. This interference is, however, decreased if the stimuli are presented
to different sensory channels.

Keywords: timing; interval discrimination; perceptual learning; temporal processing; generalization
1. INTRODUCTION
Timing in the range of tens of milliseconds to a few

seconds is of fundamental importance for a wide range

of sensory and motor tasks (Ivry & Spencer 2004;

Mauk & Buonomano 2004; Buhusi & Meck 2005;

van Wassenhove 2009). For example, the ability to

discriminate the interval and duration of sounds is

critical for speech processing (Liberman et al. 1956;

Scott 1982; Drullman 1995; Shannon et al. 1995;

Aasland & Baum 2003). However, the neural

mechanisms involved even in a simple temporal task,

such as interval discrimination, remain unknown.

Advances in the understanding of the neural basis of

learning and memory benefited tremendously from the

realization that memory was not a unitary process, but

could be divided into declarative and non-declarative

memory and each of these into further subdivisions

(Squire 1986). Similarly, the emerging realization

that temporal processing is not a unitary neural

process, but probably encompasses a number of

independent or interdependent processes, is an

important factor in understanding existing data and in

guiding future experiments.
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The mammalian brain processes temporal infor-
mation and tells time over time scales exceeding
10 orders of magnitude: from the few microseconds
used for sound localization, to daily, monthly and
yearly rhythms relevant to sleep–wake, menstrual and
seasonal cycles, respectively (Buonomano 2007). It is
well established that the neural mechanisms underlying
the shortest and longest extremes of temporal proces-
sing, sound localization and circadian rhythms, are
entirely distinct and independent (Carr 1993; King &
Takahashi 2000; Panda et al. 2002). While the
mechanisms underlying timing in the intermediary
range of milliseconds to minutes are not understood,
it is becoming increasingly evident that this range is
likely to also encompass distinct mechanisms (Fraisse
1984; Gibbon et al. 1997), and the distinction has been
made between perceptual /automatic versus cognitive
timing (Michon 1985; Rammsayer 1999; Lewis &
Miall 2003), millisecond timing versus interval timing
(Buhusi & Meck 2005) and millisecond versus second
timing (Mauk & Buonomano 2004). Thus, in order to
address the neural mechanisms of timing, it is useful
to distinguish between various potential divisions of
temporal processing. Although, the correct taxonomy
of temporal processing remains an open question,
relevant classification dimensions include:

— Time scale: perceptual versus cognitively mediated timing.
A number of groups have proposed and presented
evidence suggesting that there is a mechanistic
distinction between time perception on the scale of
This journal is q 2009 The Royal Society
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a few hundred milliseconds and time estimation on

the scale of seconds and minutes (Michon 1985;

Rammsayer & Lima 1991; Rammsayer 1999;

Buonomano & Karmarkar 2002; Lewis & Miall

2003). Exactly where the boundary lies is debated.

However, it is likely that there is a time range in which

there is significant overlap between rapid perceptual

and slower cognitively mediated timing (see §4).

— Sensory versus motor timing. Another distinction

that should be considered is whether sensory and

motor timing rely on shared mechanisms (Ivry 1996;

Mauk & Buonomano 2004; Buonomano 2005). For

example, does a complex sensory temporal task

such as Morse code recognition rely on the same

circuits as generating Morse code? Although accuracy

in sensory and production tasks is correlated (Ivry &

Hazeltine 1995; Merchant et al. 2008), it is not known

whether such correlations reflect a shared timer or

common performance, memory or cognitive factors

(Helmbold et al. 2007).

—Centralized versus local. The notion of a ‘central clock’

has been prevalent in the timing field, and implies that

temporal processing across sensory modalities relies

on the same neural circuitry. The opposing view is that

timing is local and distributed (Buonomano &

Karmarkar 2002; Ivry & Spencer 2004)—an interval

discrimination task in the auditory and visual modality

would rely on distinct neural circuits. A number of

recent experiments have favoured the local hypothesis

(Johnston et al. 2006; Burr et al. 2007; Karmarkar &

Buonomano 2007) leading to the possibility that the

subsecond timing scale is performed locally, while

longer conscious time estimation could rely on a

centralized mechanism.

—Dedicated versus intrinsic. An additional dichotomy,

related to the issue of central versus local timing,

is whether the neural mechanisms that are

ultimately performing the temporal computations—

independent of their location—are specialized for

timing (Ivry & Schlerf 2008). Dedicated models

maintain the presence of specialized neural

mechanisms, such as an internal clock composed of

a pacemaker and counter, whose primary or sole

function would be to tell time. Intrinsic models

hold that temporal processing is a general feature of

neural circuits, and that these same circuits process

both spatial and temporal information in a multi-

plexed fashion.

Determining the correct temporal taxonomy will be

critical in establishing a coherent and consistent

interpretation of the increasing number of experiments

aimed at understanding temporal processing. These

issues and the different models of temporal processing

will not be addressed in detail here, as they have

been discussed in a number of recent reviews (Lewis &

Miall 2003; Ivry & Spencer 2004; Mauk & Buonomano

2004; Buhusi & Meck 2005; Ivry & Schlerf 2008) as

well as in the accompanying articles in this issue. Here,

we will focus primarily on describing what we will refer

to as the state-dependent network (SDN) model, which

relates to subsecond sensory timing, and experimentally

examine some of its predictions.
Phil. Trans. R. Soc. B (2009)
(a) State-dependent network model

The SDN model proposes that temporal processing is
inherently encoded in the state of neural networks
(Buonomano & Merzenich 1995; Buonomano 2000).
A useful analogy is dynamics in a liquid. A pebble
thrown into a pond will create a spatial–temporal
pattern of ripples, and the pattern produced by any
subsequent pebbles will be a complex nonlinear
function of the interaction of the stimulus (the pebble)
and the internal state of the liquid (the current pattern
of ripples). Ripples thus establish a short-lasting and
dynamic memory of the recent stimulus history of the
liquid. The state of a neural network includes ongoing
activity (the active state) and the presence of time-
dependent neuronal properties (the hidden state)
(Buonomano & Maass 2009). In the case of an auditory
interval discrimination task, there is an ‘empty’ period
in the stimulus, during which the auditory cortex
neurons generally stop firing, thus timing would rely
primarily on the hidden state; i.e. the change in
network state produced by properties such as short-
term synaptic plasticity. In an interval discrimination
task, the first tone will activate a population of neurons
within a local cortical network; given the presence of
many experimentally characterized neuronal and
synaptic properties, with time constants in the order
of hundreds of milliseconds, this local network should
be in a different state before the arrival of the second
pulse 100 ms later. For example, as a result of short-
term synaptic plasticity (Zucker 1989; Reyes &
Sakmann 1999) synapses may be stronger or weaker,
which should alter the population response to the same
input. Differences in the population response can in
turn code for time. In a sense, in the same manner that
long-term potentiation provides a memory of coinci-
dent activity between groups of synapses that occurred
minutes or hours in the past (Brown et al. 1990;
Karmarkar et al. 2002), short-term synaptic plasticity
provides a memory of an event that happened a
hundred milliseconds ago.

The SDN model can be considered an intrinsic
model of timing, in that it does not rely on what most
would consider specialized timing mechanisms—
although it could be argued that one of the specialized
functions of short-term synaptic plasticity is temporal
processing. Similarly, this class of models is also local,
i.e. any cortical network could potentially process
temporal information. Furthermore, interval discrimi-
nation could potentially rely on temporal processing at
multiple sequential stages in the sensory hierarchy, and
the relative contribution of low- and high-level areas
could depend on the nature and design of the task.

The SDN model predicts that the arrival of each
sensory event is encoded in the temporal context of
previous events. Specifically, the second tone of a
100 ms interval arrives in the network state established
by the first tone, and thus the population response can
encode this interval. However, if that 100 ms interval
happened to be preceded by another tone, then it will be
superimposed on yet another neural network state. In
the same manner that previous ripples on the surface of a
pond will establish a ‘context’ or state that will alter the
ripples produced by the next pebble thrown in, each
sensory event will alter the response to the next. Because

http://rstb.royalsocietypublishing.org/
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the superposition of these states is highly nonlinear, this
model predicts that there is no built-in linear metric of
time, such as the ticks of a clock. Thus, during a two-
interval forced-choice interval discrimination task, the
presentation of the standard interval can interfere with
the processing of the comparison interval if the network
has not had time to ‘reset’. Here, reset would correspond
to the network returning to some baseline state, the
time required for this would be determined by the time
constants of the relevant time-dependent neuronal
properties. For short-term synaptic plasticity, this is
in the range of a few hundred milliseconds. Recent
experimental results have established that indeed, short
interstimulus intervals (ISIs) in an interval discrimi-
nation task impair temporal processing (Karmarkar &
Buonomano 2007). Importantly, however, if both
intervals were presented using tones of different
frequencies, little or no impairment was observed.
Thus, suggesting that timing is occurring locally, i.e.
one interval does not interfere with the timing of the
next if it arrives in a different local network—as would
be expected during the presentation of different tone
frequencies as a result of the tonotopic organization
of the auditory cortex. Here, we examine a number of
related predictions generated by the SDN model.
2. MATERIAL AND METHODS
Subjects consisted of paid undergraduate and graduate

students who reported having normal hearing, and were

between the ages of 18 and 30 from the UCLA community.

All experiments were run in accordance with the University of

California human subjects guidelines.

— Two-interval forced-choice procedure (experiment 1). Subjects

were presented with both a standard and comparison

interval on each trial. The comparison interval was equal

to the standard (100 ms)GDt. Dt was varied adaptively

according to a three-down and one-up procedure (Levitt

1971; Wright et al. 1997). The standard stimulus was

always presented first. Following an ISI, which varied

according to the experimental condition, the comparison

interval was presented and subjects were asked to judge

whether the first or the second stimulus was the longest.

The point of subjective equality (PSE) and the difference

limen (DL; just noticeable difference) were calculated

from the psychometric functions (see below).

The mean ISI for the short and long conditions was 250 and

750 ms, respectively. For each trial, the ISI was chosen from a

uniform distribution between ISIGISI!0.25. Subjects

responded by pressing one of two buttons on a computer

mouse, and were provided with immediate visual feedback

after each response. All stimuli were generated in MATLAB and

presented through headphones. Each interval was bounded

by a 15 ms long tone including a 5 ms on and off ramp. In the

same frequency conditions, both intervals were bounded by

1 kHz tones; in the different frequency conditions, the

standard and comparison intervals were presented with

1 and 4 kHz tones, respectively. A total of 19 subjects

participated in experiment 1.

— Two-interval forced-choice procedure (experiment 2). The

same two-interval forced-choice procedure described

above was used except that the comparison interval was

equal to the standard CDt, and the presentation order of
Phil. Trans. R. Soc. B (2009)
the standard and comparison interval was randomized.

In this task, threshold was defined as the mean of the

reversal values (after excluding the first three reversals),

which corresponds to a 79 per cent correct performance

level (Wright et al. 1997). As in the same frequency

condition of experiment 1, all stimuli consisted of 1 kHz

tones. A total of 15 subjects participated in experiment 2.

— Learning experiments (experiment 3). As in experiment 1,

a two-interval forced choice with an adaptive procedure

that allowed for both GDt values was used. The threshold

was defined as the mean of the reversal values. A total of

24 subjects participated in experiment 3.

— Protocol. All experiments consisted of the presentation of at

least three blocks of each condition. Each block was

composed of 60 trials and presented in pseudo-random

order. In the studies described in experiment 1, two 1 hour

sessions (on consecutive days) were administered, with

12 blocks in each session—for a total of six blocks for each

of the four conditions. In the learning experiments, during

the 8 training days, subjects performed 12 blocks, all of a

single condition. Feedback was presented after each trial in

all the experiments presented here.

— Estimation of PSE and DL. Analysis of experiment 1

consisted of fitting the data from the adaptive procedure

with the logistic function for the estimation of the

psychometric function (Kaernbach 2001). We used all

the data from all blocks for a given condition except the

first block—which was treated as a ‘practice’ session.

The bisection point at pZ0.5 was taken as the PSE, and

the gain of the logistic function times log (0.75/0.25) as the

DL (Lapid et al. 2008).
3. RESULTS
(a) Effects of different ISIs and frequency on

accuracy and PSE

As mentioned above, a previous study determined that
short ISIs impaired interval discrimination if both
intervals were presented at the same frequency, but
not if they were presented using different frequencies
(Karmarkar & Buonomano 2007). This study, however,
did not examine whether the ISI effect was produced by
a shift in the PSE (corresponding to time compression or
dilation). Here, we first examined the effect of ISI and
of changing frequencies on the PSE and DLs using a
two-interval forced-choice procedure that allowed for
the estimation of the psychometric functions.

The standard interval was 100 ms. We used a 2!2
design, varying the ISI and frequency. The ISI was
either short or long (mean of 250 or 750 ms,
respectively). The standard and comparison interval
were of the same or different frequencies (see §2),
resulting in four conditions: ShortISI-SameFr; LongISI-
SameFr; ShortISI-DiffFr; and LongISI-DiffFr. The fitted
psychometric functions for all subjects are shown in
figure 1a. Group data suggest different DLs, but similar
PSE values for all four conditions (figure 1b,c). A two-
way analysis of variance with repeated measures
revealed a significant interaction between ISI and
frequency on the DLs, indicating an increase in
threshold in the ShortISI-SameFr condition (F1,18Z33,
p!0.0005). By contrast, there was no significant
interaction or main effects on the PSE.

These results replicate the main finding of previously
published experiments (Karmarkar & Buonomano
2007): that short ISIs impair interval discrimination.

http://rstb.royalsocietypublishing.org/
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Since this effect is limited to cases in which both the
standard and comparison intervals are presented at
the same frequencies, it seems that it is not a result of a
general or non-specific effect of the increased stimulus
presentation rate, but rather a result of the interference
of the preceding stimulus on subsequent processing of
intervals coming in on the same channel. Additionally,
these results indicate that the impairment was not
produced by time compression or dilation effect since
there was no detectable shift in the PSE. Rather, the
decrease in performance is attributable to a change in
the precision of temporal discrimination. In these
experiments, the subjects received feedback after each
trial, thus it is possible that the lack of a change in the
PSE was due to ongoing ‘recalibration’ during each
block. However, a separate set of experiments in which
the feedback was omitted still revealed the same effect
of the DL and no effect on the PSE.
p!0.001) but not for the frequency thresholds (see text).
(b) Effects of different ISIs on threshold

The above results and previously published data
(Rammsayer 1999) are consistent with the notion
that there is a transition between different neural
mechanisms underlying timing somewhere in the
range of hundreds of milliseconds. In order to gain
insights as to where the boundary between millisecond
and second timing lies, we performed further experi-
ments in which we varied the ISI over five different
intervals (50, 250, 500, 750 and 1000 ms), again using
a 100 ms standard. Additionally, we performed a set of
control experiments in which we examined the effect
Phil. Trans. R. Soc. B (2009)
of three ISIs (250, 500 and 750 ms) on a frequency
discrimination task.

To obtain accurate threshold estimates with fewer
runs, we used the reversal values of the adaptive
procedure as opposed to the estimation of the
psychometric functions to quantify performance. As
shown in figure 2, the thresholds were higher for the
two shorter ISIs. A repeated-measure ANOVA revealed
a significant effect of ISI (F4,56Z6.6, p!0.001). A
planned comparison revealed that the only significant

http://rstb.royalsocietypublishing.org/
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difference between adjacent ISIs was between 250 and
500 ms ( pZ0.016; Bonferroni corrected). In contrast
to the effect of ISI on interval discrimination, there was
no significant effect of the three ISIs examined on
frequency discrimination (F2,28Z0.79, pZ0.46).

These results demonstrate that the impairment of
100 ms discrimination produced by short ISIs is
strongest at 50 and 250 ms. Interestingly, the magni-
tude of the impairments was not significantly different
between the 50 and 250 ms ISIs. The presence of a
significant difference in performance between the
250 and 500 ms ISIs, together with the absence of a
difference between 500 and 750 ms, suggests that in the
framework of the SDN model, local networks settle
back to a baseline state between 250 and 500 ms.

(c) Learning and ISI specificity

Another approach to examining whether time is
encoded in the population response of local networks,
which in turn are influenced in a nonlinear fashion by
the temporal context established by previous sensory
events, is to examine generalization patterns of
perceptual learning. Previous studies have used
generalization to examine both the temporal specificity
of interval learning and whether it generalizes across
frequency channels and sensory modalities (Wright
et al. 1997; Nagarajan et al. 1998; Westheimer 1999;
Meegan et al. 2000; Karmarkar & Buonomano 2003).
We next examined the results of training two groups of
Phil. Trans. R. Soc. B (2009)
subjects on either the ShortISI-SameFr or LongISI-
SameFr condition. The first goal of this study was to
determine whether training on the ShortISI-SameFr

could overcome the performance deficits observed
above. The second goal was to examine, if learning
occurred, whether it would generalize to the remaining
three conditions.

Experiments were performed over 10 days. During
the first and last days, subjects were administered three
blocks of each of the four conditions. In the intervening
8 days, subjects ran 12 blocks on the trained condition
(ShortISI-SameFr or LongISI-SameFr). Figure 3a,b
show the learning curves of the subjects in both
conditions. In each condition, eight subjects exhibited
significant learning curves as determined by a signi-
ficant linear trend using a one-way repeated ANOVA.
The analysis of the generalization patterns was based
on this subgroup of ‘learners’ (Wright et al. 1997;
Karmarkar & Buonomano 2003). Importantly
however, there was a significant difference in the pre-
and post-test values for both groups when tested on
their trained conditions (ShortISI-SameFr or LongISI-
SameFr) independent of whether all subjects or the
subset of learners were considered. To determine
whether learning in each group generalized to the
other three conditions, we performed a two-way
ANOVA (repeated measures on both factors), where
one factor was pre-test versus post-test, and the other,
the three naive conditions. As shown in figure 3b, in the

http://rstb.royalsocietypublishing.org/
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ShortISI-SameFr group, there was no significant main
effect of training (F1,7Z0.82, pZ0.39) or of the
interaction (F2,14Z0.58, pZ0.57). By contrast, in the
subjects trained on the LongISI-SameFr conditions,
there was a highly significant effect of training (F1,7Z
25.6, p!0.002) and no significant interaction (F2,14Z
0.68, pZ0.52).

These results established that independent of
whether subjects were trained on the ShortISI-SameFr

or LongISI-SameFr conditions, they improved on the
trained stimulus set. However, while the subjects
trained on the ‘easy’ (LongISI-SameFr) showed robust
generalization, those trained on the ‘hard’ condition
(ShortISI-SameFr) did not show any significant
transfer to the naive conditions. Interestingly, these
transfer results are consistent with generalization
patterns in other forms of perceptual learning,
specifically training on an easy condition produces
more robust generalization (Ahissar & Hochstein
1997). Indeed, training on LongISI-SameFr seemed to
be as effective as actual training on the ShortISI-SameFr

in improving ShortISI-SameFr performance. Specifi-
cally, post-test SameISI–SameFr threshold was on an
average lower in the LongISI-SameFr group than in the
SameISI–SameFr condition.
4. DISCUSSION
The above results provide a new set of constraints that
must be accounted for by any general model of
temporal processing in the millisecond range. While
the results are largely consistent with the predictions
made by the SDN model, they also highlight the need
to further refine this model and cannot exclude a
number of additional models. Below we address the
implications of the current results.

(a) The boundary between time perception and

time estimation

Some of the first psychophysical evidence that milli-
second and second timing may rely on distinct
mechanisms was provided by Rammsayer and
colleagues who showed that discrimination of a 1 s
interval was impaired when subjects performed an
additional cognitive task, but 50 ms discrimination
was not (Rammsayer & Lima 1991). Additionally,
pharmacological manipulations of the dopaminergic
system and benzodiazepines can differentially affect
50–100 ms and 1 s discrimination (Rammsayer 1997,
1999). The observation that the relationship between
performance and the standard interval, as measured by
the coefficient of variation, is higher for short intervals,
has also been used to argue that there is a transition
between timing mechanisms in the range of hundreds of
milliseconds (Gibbon et al. 1997; Mauk & Buonomano
2004). Additionally, experiments which show that short
intervals are more impaired in inter-modal timing tasks
are consistent with the notion that millisecond proces-
sing may rely more on local channel-specific networks,
while longer intervals may be more centralized and less
influenced by channel manipulations (Rousseau et al.
1983). In a meta-analysis study, Lewis & Miall (2003)
suggested that the differential patterns of blood-oxygen-
level-dependent activity in short- and long-interval
Phil. Trans. R. Soc. B (2009)
discrimination tasks are also consistent with distinct
neural mechanisms. Recent results have further suppor-
ted the presence of different mechanisms by showing
that a distractor stimulus preceding the interval to be
discriminated impairs 100 ms, but not 1 s discrimi-
nation (Karmarkar & Buonomano 2007).

While there is mounting evidence for distinct
mechanisms for a perceptual and cognitive timing,
the boundary and degree of overlap between them is
unclear. One of the goals of experiment 2 was to use
the hypothesis that perceptual timing relies on local
state-dependent computations and thus is susceptible
to interference by preceding stimuli, and to examine
the issue of where the transition between short- and
long-interval mechanisms lies. The results suggest
that the boundary may lie between 250 and 500 ms.
This range is consistent with the proposal that time-
dependent neural properties such as short-term
synaptic plasticity may underlie temporal processing,
since many forms of short-term synaptic plasticity
seem to take a few hundred milliseconds to ‘reset’,
i.e. return to baseline PSP amplitude (Markram
et al. 1998; Reyes & Sakmann 1999; Marder &
Buonomano 2003).

An additional task that has been used to examine the
boundary between different timing scales was one in
which a variable ‘distractor’ is presented before the
comparison interval. Similarly, to the task studied here,
this distractor was predicted to alter the subsequent
timing by placing the network in a different state during
each trial. It was originally shown that a distractor with a
100 (50–150) ms mean significantly decreased discrimi-
nation of a 100 ms task, but a proportional distractor
did not impair a 1 s discrimination task (Karmarkar &
Buonomano 2007). A recent study replicated this
finding for a 100 ms standard interval, but reports that
a 300 (225–375) ms distractor did not alter discrimi-
nation of a 300 ms interval (Spencer et al. 2009);
however, an additional study has reported a significant
effect of a standard interval of 300 ms using variable
distractors with the same mean but with a range of
150–450 ms (Rocca & Burr 2007).

Together, current studies suggest a boundary
between perceptual and cognitive timing in the range
of hundreds of milliseconds, and well below 1 s.
However, it is important to stress that in addressing
the existence of distinct mechanisms for millisecond
and second timing, it is critical to note that an actual
‘hard’ boundary is unlikely, rather a transition range
with a significant degree of overlap is likely to be
present. Furthermore, within this transition zone, it is
likely that both mechanisms could operate in parallel
and their respective contributions could depend on the
nature of the task at hand.

(b) Temporal perceptual learning

Previous studies on perceptual learning of interval
discrimination have revealed that learning is temporally
specific; learning of one interval does not generalize to
other intervals (Wright et al. 1997; Nagarajan et al. 1998;
Karmarkar&Buonomano2003).However, these studies
and other studies have also demonstrated that interval
learning can generalize to different auditory frequencies
(Wright et al. 1997; Karmarkar & Buonomano 2003),
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visual locations (Westheimer 1999) and from one
modality to another (Nagarajan et al. 1998; Meegan
et al. 2000). The interval specificity could be interpreted
as meaning that there are specialized timing circuits for
each interval; however, this is also what is expected from
the SDN model if one assumes that learning consists of
an improved readout of the population code specific to
each interval (Buonomano 2000). By contrast, the
generalization to different spatial channels could be
used to argue that there is a central timer (see below).

The perceptual learning results presented here
further establish that interval discrimination undergoes
learning, and demonstrate that the severe impairment
produced presenting the standard and comparison
intervals in close temporal proximity can be overcome
to the extent that performance becomes similar for both
the short and long ISIs (figure 3b). Interestingly,
however, training on the ShortISI-SameFr condition
did not improve performance on the LongISI-SameFr

condition. This result is unique in that it demonstrates a
highly specific form of learning, i.e. there was no
generalization to the same standard interval of 100 ms
when the ISI was 750 ms—in other words, in this case
learning was specific to both the ISI of 250 ms and
the frequency condition. By contrast, training on the
LongISI-SameFr condition transferred to other con-
ditions. Thus, LongISI-SameFr training did result in
improvement in the ShortISI-SameFr; however, there
was still a significant difference between LongISI-SameFr

and ShortISI-SameFr after training ( pZ0.003), which
was not the case after ShortISI-SameFr training. Thus,
the fact that the ISI impairment was erased after training
on ShortISI-SameFr but not after LongISI-SameFr

training suggests that qualitatively different learning
strategies are being engaged (see below).

(c) Open questions in the SDN model

As recently pointed out by Ivry & Schlerf (2008),
a number of critical issues remain unaddressed in most
models of temporal processing, including in the SDN
model. One issue relates to the transfer of interval
discrimination learning to different sensory channels
(Wright et al. 1997). First, in interpreting these
psychophysical results, it is critical to recall the often
implicit assumption that there exists a single
mechanism or site of learning is unlikely to be true.
Neurophysiological and psychophysical perceptual
learning studies have indicated that there are probably
a number of different forms and sites of plasticity
operating in parallel (Gilbert et al. 2001; Ahissar &
Hochstein 2004; Amitay et al. 2006). A perceptual task
relies on a number of distinct cognitive mechanisms. In
the case of interval discrimination, in addition to a
means to measure time per se, it is also necessary to
temporarily store the standard interval, compare the
measured intervals and make a decision based on this
comparison. While temporal perceptual learning may
indeed rely primarily on improvement of the temporal
component, there is little evidence that it could not be a
result of improved memory of the standard interval or
in the comparison of both intervals. Indeed, an
improvement in either of these mechanisms could
explain the interval specificity of learning as well as the
spatial generalization. Additionally, it is important to
Phil. Trans. R. Soc. B (2009)
emphasize that while the SDN model directly addresses
the potential timing mechanisms, it does not make any
strong predictions regarding the mechanisms of
temporal perceptual learning.

Independent of the mechanisms of temporal
perceptual learning, a critical question common to all
local models of temporal processing, including the
SDN model, remains: how are intervals on different
channels compared? Specifically, if we assume that
temporal computations occur in local cortical
networks, how do we compare the interval at one
frequency with that from another frequency or
modality? The population response ‘signature’ to a
100 ms interval in the auditory and somatosensory
cortices should be entirely unrelated. This is a
fundamental problem, but not unique to timing; it is
a restatement of the problem of how the brain performs
invariant pattern recognition (Olshausen et al. 1995;
Buonomano & Merzenich 1999; DiCarlo & Cox
2007). How do we know that the letter ‘A’ in the left
hemifield corresponds to the same symbol when it is
flashed to the right hemifield? Or similarly, how do we
know that the same word spoken in a low or high-
pitched voice is the same word? In both cases, the set of
primary cortical neurons activated by both stimuli is
non-overlapping. Although the mechanisms underlying
invariant pattern recognition remain unknown, a
number of proposed solutions require experience-
dependent mapping of different sensory represen-
tations to a common higher order representation. It
seems inevitable that all local models of temporal
processing will have to rely on some similar mapping,
which would allow intervals on different sensory
channels to be mapped to a shared representation.
A related possibility is that generalization across
different frequencies or modalities could occur despite
the fact that timing per se is occurring in different
networks because the code could be the same. A simple
example of a SDN model of this kind would be a
‘suppression code’. Specifically, it is well established
that the neural and population response to the second
of a pair of tones can be suppressed (forward masked)
by the first, and the magnitude of this suppression is
time dependent (Brosch & Schreiner 1997; Rennaker
et al. 2007). Thus, the magnitude of the response could
encode time, such a code could be considered a type of
an energy model of timing, and could potentially be
universally read out by downstream neurons.

(d) Nonlinear metrics of time

The strong prediction of the SDN model is that there is
no linear metric of time. This means that the
population code for a 100 ms interval is not inherently
related in any linear fashion to the population code for a
200 ms interval—by contrast, in a clock model, if 100
ticks corresponds to 100 ms it can be immediately
established that 200 ticks corresponds to 200 ms.
However, it is important to note that SDN does not
imply that the appropriate mapping of the network
response to a linear metric cannot be learned through
experience. Indeed, we interpret the fact that subjects
improved in the ShortISI-SameFr as evidence of this
(recall that in this condition the ISI varied between
approx. 190 and 310 ms). Clearly, we learn to identify
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the same intervals in a multitude of different temporal
contexts. For example, anyone fluent in Morse code
must learn to identify whether the duration of a tone
was short or long in the context of an extremely
complex and rapid sequence of previous tones. Morse
code and language are, of course, complex tasks,
requiring years to learn, and some of this learning
may be devoted to establishing that the same stimulus
can produce different neural population codes depend-
ing on the temporal context. The interference between
successive stimuli would be lessened by decreasing the
presentation rate of the stimuli—which may be related
to why the initial stages of Morse code and language
learning are facilitated by slow rates.

It is clear the SDN and other models of temporal
processing are not sufficient to explain all facets of
temporal processing, particularly regarding the
mechanisms underlying temporal perceptual learning.
As we develop more elaborate models and theories of
temporal processing, it will be important to distinguish
between task components that reflect true temporal
processing and those that correspond to more general
cognitive components shared by non-temporal percep-
tual tasks, such as the buffering and comparison of
stimulus features, and invariant forms of pattern
recognition. Additionally, while our current focus
remains on simple temporal tasks, such as interval
and duration tasks, it is ultimately necessary that the
same models account for complex forms of temporal
processing, such as temporal sequences or Morse code.
The SDN has this potential, but predicts that previous
stimuli can interfere with the encoding of subsequent
temporal features. This is both an inherent strength
and weakness of the model. A strength because it
naturally encodes complex temporal patterns as well as
simple intervals (Buonomano 2000); a weakness
because by encoding every object in the context of
the previous, it becomes challenging to identify specific
temporal objects embedded in a stream of stimuli
(Knüsel et al. 2004).

This research was supported by the NIMH.
REFERENCES
Aasland, W. A. & Baum, S. R. 2003 Temporal parameters as

cues to phrasal boundaries: a comparison of processing by
left- and right-hemisphere brain-damaged individuals.
Brain Lang. 87, 385–399. (doi:10.1016/S0093-934X(03)
00138-X)

Ahissar, M. & Hochstein, S. 1997 Task difficulty and the
specificity of perceptual learning. Nature 387, 401–406.
(doi:10.1038/387401a0)

Ahissar, M. & Hochstein, S. 2004 The reverse hierarchy
theory of visual perceptual learning. Trends Cogn. Sci. 8,
457–464. (doi:10.1016/j.tics.2004.08.011)

Amitay, S., Irwin, A. & Moore, D. R. 2006 Discrimination
learning induced by training with identical stimuli. Nat.
Neurosci. 9, 1446–1448. (doi:10.1038/nn1787)

Brosch, M. & Schreiner, C. E. 1997 Time course of forward
masking tuning curves in cat primary auditory cortex.
J. Neurophysiol. 77, 923–943.

Brown, T. H., Kairiss, E. W. & Keenan, C. L. 1990 Hebbian
synapses: biophysical mechanisms and algorithms. Annu.
Rev. Neurosci. 13, 475–511. (doi:10.1146/annurev.ne.13.
030190.002355)
Phil. Trans. R. Soc. B (2009)
Buhusi, C. V. & Meck, W. H. 2005 What makes us tick?

Functional and neural mechanisms of interval timing.

Nat. Rev. Neurosci. 6, 755–765. (doi:10.1038/nrn1764)

Buonomano, D. V. 2000 Decoding temporal information: a

model based on short-term synaptic plasticity. J. Neurosci.

20, 1129–1141.

Buonomano, D. V. 2005 A learning rule for the emergence of

stable dynamics and timing in recurrent networks.

J. Neurophysiol. 94, 2275–2283. (doi:10.1152/jn.01250.

2004)

Buonomano, D. V. 2007 The biology of time across different

scales. Nat. Chem. Biol. 3, 594–597. (doi:10.1038/

nchembio1007-594)

Buonomano, D. V. & Karmarkar, U. R. 2002 How do we tell

time? Neuroscientist 8, 42–51.

Buonomano, D. V. & Maass, W. 2009 State-dependent

computations: spatiotemporal processing in cortical net-

works. Nat. Rev. Neurosci. 10, 113–125. (doi:10.1038/

nrn2558)

Buonomano, D. V. & Merzenich, M. 1999 A neural network

model of temporal code generation and position-invariant

pattern recognition. Neural Comput. 11, 103–116. (doi:10.

1162/089976699300016836)

Buonomano, D. V. & Merzenich, M. M. 1995 Temporal

information transformed into a spatial code by a neural

network with realistic properties. Science 267, 1028–1030.

(doi:101126/science.7863330)

Burr, D., Tozzi, A. & Morrone, M. C. 2007 Neural

mechanisms for timing visual events are spatially selective

in real-world coordinates. Nat. Neurosci. 10, 423–425.

(doi:10.1038/nn1874)

Carr, C. E. 1993 Processing of temporal information in the

brain. Annu. Rev. Neurosci. 16, 223–243. (doi:10.1146/

annurev.ne.16.030193.001255)

DiCarlo, J. J. & Cox, D. D. 2007 Untangling invariant object

recognition. Trends Cogn. Sci. 11, 333–341. (doi:10.1016/

j.tics.2007.06.010)

Drullman, R. 1995 Temporal envelope and fine structure

cues for speech intelligibility. J. Acoust. Soc. Am. 97,

585–592. (doi:10.1121/1.413112)

Fraisse, P. 1984 Perception and estimation of time. Annu.

Rev. Psychol. 35, 1–36. (doi:10.1146/annurev.ps.35.

020184.000245)

Gibbon, J., Malapani, C., Dale, C. L. & Gallistel, C. R. 1997

Toward a neurobiology of temporal cognition: advances

and challenges. Curr. Opin. Neurobiol. 7, 170–184.

(doi:10.1016/S0959-4388(97)80005-0)

Gilbert, C. D., Sigman, M. & Crist, R. E. 2001 The neural

basis of perceptual learning. Neuron 31, 681–697. (doi:10.

1016/S0896-6273(01)00424-X)

Helmbold, N., Troche, S. & Rammsayer, T. 2007 Processing

of temporal and nontemporal information as predictors of

psychometric intelligence: a structural-equation-modeling

approach. J. Pers. 75, 985–1006. (doi:10.1111/j.1467-

6494.2007.00463.x)

Ivry, R. 1996 The representation of temporal information in

perception and motor control. Curr. Opin. Neurobiol. 6,

851–857. (doi:10.1016/S0959-4388(96)80037-7)

Ivry, R. B. & Hazeltine, R. E. 1995 Perception and

production of temporal intervals across a range of

durations: evidence for a common timing mechanism.

J. Exp. Psychol. Hum. Percept. Perform. 21, 3–18. (doi:1010

37/0096-1011523.21.1.3)

Ivry, R. B. & Schlerf, J. E. 2008 Dedicated and intrinsic

models of time perception. Trends Cogn. Sci. 12, 273–280.

(doi:10.1016/j.tics.2008.04.002)

Ivry, R. B. & Spencer, R. M. C. 2004 The neural

representation of time. Curr. Opin. Neurobiol. 14,

225–232. (doi:10.1016/j.conb.2004.03.013)

http://dx.doi.org/doi:10.1016/S0093-934X(03)00138-X
http://dx.doi.org/doi:10.1016/S0093-934X(03)00138-X
http://dx.doi.org/doi:10.1038/387401a0
http://dx.doi.org/doi:10.1016/j.tics.2004.08.011
http://dx.doi.org/doi:10.1038/nn1787
http://dx.doi.org/doi:10.1146/annurev.ne.13.030190.002355
http://dx.doi.org/doi:10.1146/annurev.ne.13.030190.002355
http://dx.doi.org/doi:10.1038/nrn1764
http://dx.doi.org/doi:10.1152/jn.01250.2004
http://dx.doi.org/doi:10.1152/jn.01250.2004
http://dx.doi.org/doi:10.1038/nchembio1007-594
http://dx.doi.org/doi:10.1038/nchembio1007-594
http://dx.doi.org/doi:10.1038/nrn2558
http://dx.doi.org/doi:10.1038/nrn2558
http://dx.doi.org/doi:10.1162/089976699300016836
http://dx.doi.org/doi:10.1162/089976699300016836
http://dx.doi.org/doi:101126/science.7863330
http://dx.doi.org/doi:10.1038/nn1874
http://dx.doi.org/doi:10.1146/annurev.ne.16.030193.001255
http://dx.doi.org/doi:10.1146/annurev.ne.16.030193.001255
http://dx.doi.org/doi:10.1016/j.tics.2007.06.010
http://dx.doi.org/doi:10.1016/j.tics.2007.06.010
http://dx.doi.org/doi:10.1121/1.413112
http://dx.doi.org/doi:10.1146/annurev.ps.35.020184.000245
http://dx.doi.org/doi:10.1146/annurev.ps.35.020184.000245
http://dx.doi.org/doi:10.1016/S0959-4388(97)80005-0
http://dx.doi.org/doi:10.1016/S0896-6273(01)00424-X
http://dx.doi.org/doi:10.1016/S0896-6273(01)00424-X
http://dx.doi.org/doi:10.1111/j.1467-6494.2007.00463.x
http://dx.doi.org/doi:10.1111/j.1467-6494.2007.00463.x
http://dx.doi.org/doi:10.1016/S0959-4388(96)80037-7
http://dx.doi.org/doi:101037/0096-1011523.21.1.3
http://dx.doi.org/doi:101037/0096-1011523.21.1.3
http://dx.doi.org/doi:10.1016/j.tics.2008.04.002
http://dx.doi.org/doi:10.1016/j.conb.2004.03.013
http://rstb.royalsocietypublishing.org/


Effect of ISI on interval discrimination D. V. Buonomano et al. 1873

 on 1 June 2009rstb.royalsocietypublishing.orgDownloaded from 
Johnston, A., Arnold, D. H. & Nishida, S. 2006 Spatially

localized distortions of event time. Curr. Biol. 16,

472–479. (doi:10.1016/j.cub.2006.01.032)

Kaernbach, C. 2001 Slope bias of psychometric functions

derived from adaptive data. Percept. Psychophys. 63,

1389–1398.

Karmarkar, U. R. & Buonomano, D. V. 2003 Temporal

specificity of perceptual learning in an auditory discrimi-

nation task. Learn. Mem. 10, 141–147. (doi:10.1101/lm.

55503)

Karmarkar, U. R. & Buonomano, D. V. 2007 Timing in the

absence of clocks: encoding time in neural network states.

Neuron 53, 427–438. (doi:10.1016/j.neuron.2007.01.006)

Karmarkar, U. R., Najarian, M. T. & Buonomano, D. V. 2002

Mechanisms and significance of spike-timing dependent

plasticity. Biol. Cybern. 87, 373–382. (doi:101007/s00422-

002-0351-0)

King, D. P. & Takahashi, J. S. 2000 Molecular genetics of

circadian rhythms in mammals. Annu. Rev. Neurosci. 23,

713–742. (doi:101146/annurev.neuro.23.1.713)
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