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Abstract
Our interaction with the environment and each other is inherently time-varying in nature. It is thus not sur-
prising that the nervous systems of animals have evolved sophisticated mechanisms to not only tell time,
but to learn to discriminate and produce temporal patterns. Indeed some of the most sophisticated human
behaviors, such as speech and music, would not exist if the human brain was unable to learn to discriminate
and produce temporal patterns. Compared to the study of other forms of learning, such as visual percep-
tual learning, the study of the learning of interval and temporal pattern discrimination in the subsecond
range is relatively recent. A growing number of studies over the past 15 years, however, have established
that perceptual and motor timing undergo robust learning. One of the principles to have emerged from
these studies is that temporal learning is generally specific to the trained interval, an observation that has
important implications to the neural mechanisms underlying our ability to tell time.

Keywords
Time, perceptual and motor learning

1. Introduction

Dancing, playing the piano or speaking are all challenging activities for our motor
and sensory systems: these activities require the capacity to produce highly timed
motor responses and at the same time to decode highly structured temporal pat-
terns. Like many others perceptual and motor skills our capacity to produce and
perceive time can be learned. In his seminal book ‘The Principles of Psychology’
(James, 1890, Vol. 2, Ch. XV, p. 618) William James wrote: “Like other senses, too,
our sense of time is sharpened by practice”. James cites a work published in 1885
in which Max Mehner tested himself for two weeks on a perceptual interval dis-
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crimination task. Using auditory stimuli (empty intervals marked by the sound of
a hammer attached to a hand-made clock), he measured discrimination thresh-
olds across intervals ranging from 1 to 5 s. Based on his simple study with a single
subject, he concluded that interval discrimination undergoes learning and that
multiple days of practice were essential to improve timing (Mehner, 1885). This
very early work anticipates what successive decades of systematic investigations
confirm: training on temporal tasks improves temporal discrimination.

Here we review both psychophysical and neurophysiological literature on per-
ceptual and motor temporal learning. Our focus is primarily on human literature
in the subsecond time scale, however, in the context of the mechanisms underly-
ing timing we also review some of the animal literature on temporal processing.
Our aim is to offer a concise overview of empirical findings on temporal learning
and to discuss these findings within the framework of current models of temporal
processing.

2. Temporal Perceptual Learning

Temporal perceptual learning has been studied with two general approaches. Early
work investigated the effect of temporal training by using a relatively small number
of observations and by looking at behavioral changes within a single experimen-
tal session, usually conducted in a single day (Aiken, 1965; Goldstone & Goldfarb,
1966; Warm et al., 1975). These studies used durations mainly in the second range
(Grondin et al., 2009; Kristofferson, 1980; Matthews & Grondin, 2012; Rousseau
et al., 1983) and perceptual categorization and bisection tasks. Later studies made
use of much longer training procedures, usually several days (see Table 1). These
studies were most often based on temporal discrimination tasks in the subsecond
range, and explored the generalization of temporal learning. In this section we fo-
cus on these later studies because they are primarily on timing in the subsecond
range and because they systematically investigated generalization and specificity
of temporal learning.

2.1. The Tasks

A large number of different tasks and procedures have been used to study temporal
perceptual learning. However, the most commonly used temporal discrimination
tasks ask subjects to compare stimuli of two different durations (Fig. 1A, B): a ‘stan-
dard’ and a ‘comparison’. Each stimulus can be defined as an empty interval or a
filled duration, presented in the auditory, visual, or somatosensory modality. In the
auditory domain a stimulus often consists of two brief tones (e.g., 25 ms) of a given
pitch in which the time between the onset of each tone determines the interval
of the stimulus. The duration of the standard stimulus is a fixed value (T ) whereas
the comparison can be either longer or shorter than the standard (±�T ). The sub-
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Figure 1. Temporal discrimination tasks. Two-interval alternative forced choice tasks (2AFC).
(A) Schematic representation of a single trial where a standard (T ) and a comparison duration
(T ± �T ) are sequentially presented. By pressing one of two response keys subjects have to de-
cide which one of the two intervals lasted longer. After the response a feedback about performance
accuracy is provided. In an alternate version of this 2AFC task, the comparison stimulus is equal to
T +�T , and the order of the standard and comparison are randomized. (B) Trial representation of a
2AFC task where only a single comparison duration (T ± �T ) is presented in every trial. This figure
is published in colour in the online version.

ject’s task is to decide, by pressing one of two response keys, which one of the two
stimuli was the longest.

A critical component of temporal discrimination tasks relates to how the differ-
ence between the standard and comparison duration (�T ) changes throughout
the task. In an adaptive (‘up-down’) procedure this value is adjusted based on the
subjects performance (therefore different subjects experience different values and
ranges of comparison intervals). In the method of constant stimuli �T is randomly
selected from a fixed set of values at each trial; therefore all subjects experience the
same set of comparison values. Using the adaptive procedure, �T is varied in step-
wise method that should ultimately converge to a psychophysical threshold (Levitt,
1971), whereas in the method of constant stimuli the percent of correct responses
at each value of �T is used to fit a psychometric function and calculate the dis-
crimination threshold (difference limen or just-noticeable different, Lapid et al.,
2008). This threshold is often expressed as half of the value in milliseconds that
spans the range in which subjects get between 25% and 75% of correct responses.

The presentation of both a comparison and standard stimulus on each trial rep-
resents a two-alternative forced choice task (Bueti et al., 2012; Nagarajan et al.,
1998). However, tasks in which only the comparison stimulus is presented in each
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trial can also be used (Fig. 1B). In these single-stimulus tasks subjects make a judg-
ment based on comparison to the standard interval presented at the beginning of
the block or to an evolving internal standard based on the continuous feedback
over trials (Karmarkar & Buonomano, 2003).

2.2. Perceptual Learning of Temporal Intervals

One of the first systematic studies on temporal perceptual learning was performed
by Wright and collaborators (Wright et al., 1997). In this work volunteers were
trained for ten days (900 trials per day) on an interval discrimination task. The
duration trained was a 100 ms empty interval marked by brief tones of 1 kHz fre-
quency. Before and after-training volunteers were also tested with stimuli differing
from the trained stimuli, including: 50 ms-1 kHz, 200 ms-1 kHz, and 100 ms-4 kHz.
Training resulted in approximately a 50% decrease in the discrimination thresh-
olds for the trained interval (100 ms-1 kHz), interestingly there was a similar im-
provement in the same interval-different pitch condition (100 ms-4 kHz). No im-
provement, however, was observed for the untrained intervals. These results were
the first to establish that temporal training is interval specific, but can generalize
across different stimulus dimensions. Similarly to subsequent studies (Bueti et al.,
2012; Karmarkar & Buonomano, 2003), not all volunteers exhibited learning ef-
fects (two out of 14 subjects did not learn) and from the inspection of the Weber
fractions over time it is clear that performance improved rapidly in the first few
days of training and then reached a plateau, after which very little improvements
were observed.

The learning-dependent improvement in interval discrimination of the trained
interval and the absence of generalization to untrained intervals has since been
replicated in numerous studies (Buonomano et al., 2009; Karmarkar & Buono-
mano, 2003; Meegan et al., 2000; Nagarajan et al., 1998; Wright et al., 2010). Table 1
summarizes many of the studies that have examined temporal perceptual learning
of intervals in the subsecond range and interval specificity. At least one study failed
to observe training related improvement in temporal discrimination thresholds
(Rammsayer, 1994). In this study subjects were trained for 20 days on a tempo-
ral discrimination task of 50 ms auditory intervals. After the training none of the
tested subjects (N = 6) exhibited a significant decrease in discrimination thresh-
olds. A possible factor contributing to the lack of learning effects in this study was
the use of only 50 trials per training day — all the studies reported in Table 1 used
a minimum of 150 trials per day.

2.3. Spatial and Temporal Generalization

In this section we examine the critical question of generalization of temporal per-
ceptual learning. There are at least two critical dimensions to the question of gener-
alization, which we will refer to as spatial and temporal generalization. We will use
the term spatial generalization to refer to the potential transfer of learning from the
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trained stimulus to stimuli that arrive in the nervous system through different in-
put pathways or channels (i.e., stimuli that are coded in different spatial locations).
Thus spatial generalization would include a change in pitch of auditory tones (be-
cause of the tonotopic organization of the cochlea) or a change of sensory modality.
Temporal generalization refers to changes from the trained interval in the absence
of changes to the physical stimuli used (pitch, color, position, orientation, etc.).

Numerous studies have observed robust spatial generalization as reflected by
improved timing to the trained interval presented with different sensory charac-
teristics or in a different sensory modality (Karmarkar & Buonomano, 2003; Na-
garajan et al., 1998; Westheimer, 1999; Wright et al., 1997; Wright et al., 2010). In
the auditory modality, studies have shown that training to discriminate brief audi-
tory intervals (e.g., 100 ms-1 kHz) led to a decrease of discrimination thresholds not
only for the trained interval but also for intervals of equal length but different pitch
(100 ms-4 kHz, Buonomano et al., 2009; Karmarkar & Buonomano, 2003; Wright
et al., 1997; Wright et al., 2010). An equivalent result has been observed in the so-
matosensory modality, where training with brief tactile intervals (75 and 125 ms)
produced generalization effects to the same intervals tested on different skin loca-
tions (i.e., different digits of the same hand and the same digit of the two hands,
Nagarajan et al., 1998). Spatial generalization has also been shown in the visual
modality for a 500 ms visual filled interval when presented from the trained (i.e.,
the left) to the untrained (i.e., right) visual field (Westheimer, 1999).

Generalization can also occur for the trained interval presented within an un-
trained sensory modality. This cross-sensory generalization has been observed
from the somatosensory to the auditory modality (Nagarajan et al., 1998: 50 and
100 ms), from the visual to the auditory modality (Bueti et al., 2012: 200 ms) and
vice-versa (i.e. from the auditory to the visual modality, Bratzke et al., 2012: 100 ms;
but see Grondin & Ulrich, 2011; Lapid et al., 2009). Other forms of generalization
concern the nature of the temporal interval, from empty to filled intervals (Kar-
markar & Buonomano, 2003; Lapid et al., 2009), and from the sensory to motor
modality (Meegan et al., 2000).

In contrast to the spatial generalization, as mentioned above, temporal gener-
alization has rarely been reported, in other words temporal perceptual learning is
mostly temporal specific (Fig. 2). None of the studies cited above observed general-
ization for intervals differing by more than 50% from the trained interval (but see
Lapid et al., 2009 and Wright et al., 1997 concerning the generalization from 100 to
50 ms interval). Thus, as highlighted in Table 1, studies over the past 15 years have
led to a clear picture relating to the generalization of temporal perceptual learning.
Learning is highly specific in the temporal domain, but can generalize broadly —
even across modalities — in the spatial domain.

The generalization signatures of temporal perceptual learning are of particular
importance to one of the most significant questions in the timing field, specifically
whether timing relies on a single ‘dedicated’ timing mechanism or whether tim-
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Figure 2. Interval specific learning and interval generalization. (A) Pretest and posttest interval dis-
crimination thresholds for three different conditions: 100 ms standard interval bounded by a 1 kHz
tone; 100 ms standard interval bounded by a 3.75 kHz tone; and a 200 ms interval bounded by 1 kHz
tones. Between the pre- and posttests, subjects were trained for 10 days on the 100 ms/1 kHz condition
(solid bars). In addition to the learning in the trained condition (solid bars), subjects demonstrated
robust generalization to the same-interval-different-frequency condition (100 ms/3.75 kHz), but not
to the novel interval. (B) Data from a separate experiment in which subjects were trained on the
200 ms/1 kHz condition (solid bars). Again, in addition to learning the trained condition (solid bars),
there was robust generalization to the same-interval-different-frequency condition, but not to a novel
interval. Modified from Karmarkar and Buonomano (2003). This figure is published in colour in the
online version.

ing reflects a general and widespread computation that can be carried out in most
neural circuits (‘intrinsic timing’, Buonomano & Karmarkar, 2002; Ivry & Schlerf,
2008; Ivry & Spencer, 2004). Temporal specificity seems to favor intrinsic timing
mechanisms. But in contrast, spatial generalization seems to suggest the existence
of a centralized temporal mechanism; one that, for example, processes/encodes
time independently of the sensory modality and the spatial location of the tempo-
ral intervals (Allman et al., 2014; Meck & Church, 1982; Meck et al., 2008). These
arguments however, rely on a number of assumptions, including that the spatial
generalization relies on the same neural mechanisms subserving the learning of
the trained stimulus, rather than an independent neural processes — such as
improved encoding of the neural representations of temporal intervals. Interest-
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ingly, the question of whether generalization and learning arise from either similar
or distinct neural changes has been addressed in a recent psychophysical work
(Wright et al., 2010). In this study different groups of volunteers were trained in
a temporal discrimination task of brief auditory intervals (100 ms 1 kHz) for two,
four or ten days. The results show that the time-course of learning on the trained
interval was relatively rapid, with statistically significant improvement observed
after two days of training (900 trials each). However, the time-course of general-
ization to an untrained frequency (100 ms-4 kHz) was considerably longer, only
appearing after four days of training. The different time courses of these improve-
ments indicate that perceptual learning and generalization have distinct neural
substrates.

Further support to the notion that generalization may be dissociated from the
mechanisms underlying perceptual learning is the observation that factors such
as task difficulty and attention can influence generalizations processes. In orien-
tation discrimination tasks in the visual domain, for example, it has been shown
that the degree of learning specificity, and consequently the extent of general-
ization, depends on the difficulty of the trained condition (Ahissar & Hochstein,
1997). Consistent with this report is the result of a recent temporal learning study
by Buonomano and colleagues (2009). In this work subjects were trained to dis-
criminate two brief empty auditory intervals (100 ms) that could be separated by
either a short (250 ms) or a long (750 ms) inter-stimulus-interval (ISI). Two groups
of subjects were trained in either the long or the short ISI condition. In the ab-
sence of training, interval discrimination was impaired in the short ISI condition.
After training a decrease of discrimination thresholds was observed in both groups.
However, whereas the group that was trained with a long ISI showed generalization
to stimuli with different pitches and to stimuli tested in the short ISI condition,
the group trained with the short ISI did not exhibit generalization. These results
are consistent with the notion that challenging training conditions produce less
generalization. Additionally, as reviewed in Section 4, the idea that generalization
and temporal learning are sustained by different neural mechanisms is supported
by the recent observation that partially distinct brain regions are associated with
cross-sensory (audio-visual) generalization and temporal learning of a short visual
interval (Bueti et al., 2012).

Together, numerous studies suggest that learning and generalization may rely
on distinct processes. Thus, we would argue that the spatial generalization ob-
served in many temporal perceptual learning studies (Table 1), does not provide
a strong argument for a shared centralized timing mechanism, particularly given
data showing that significant improvements in interval discrimination can be ob-
served in the absence of spatial generalization early in the learning process (Wright
et al., 2010).
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3. Learning of Temporal Motor Patterns

In addition to the perceptual temporal discrimination studies discussed above,
temporal learning studies have focused on motor tasks. In this section we focus
on the learning of motor timing tasks and the question of whether the learning
of sensory and motor tasks relies on shared or distinct mechanisms. At the outset
is important to note that in many motor timing studies, the traditional distinction
between perceptual and motor components is somewhat blurred, because in a typ-
ical reproduction task there is both a sensory and a motor component: subjects first
experience an interval and then generate that interval using their fingers. Practice
based improvements could thus include both a sensory component as well as a
pure motor component.

3.1. Learning of Motor Intervals and Patterns

Motor studies of temporal learning have been based on a number of different
tasks involving the reproduction of isolated intervals, or of periodic or aperiodic
sequences. In an interval reproduction task, subjects hear or see a given interval
and then reproduce that interval using a keyboard. In the context of periodic stud-
ies, the synchronization-continuation task is often used. In a typical version of this
task subjects listen to a series of auditory tones presented at a given frequency,
entrain their finger tapping to this sequence, and then continue to reproduce the
target period once the sensory stimulus is turned off. Ivry & Hazeltine (1995) exam-
ined temporal motor learning in both interval reproduction and synchronization-
continuation tasks based on intervals ranging from 325 to 550 ms. After four daily
training sessions, they observed a decrease in the variance of the intervals pro-
duced in the interval task, but not in the periodic task — the absence of learning in
the periodic task may have been related to the fact that there were effectively many
more trials and feedback in the interval condition. Bartolo & Merchant (2009) also
observed a training related reduction in the variance of an interval reproduction
task. The subjects were trained on intervals of 450, 650, or 850 ms, and exhibited
decreases of approximately 20 to 40% of the pre-training standard deviation (S.D).
Consistent with the notion that temporal learning requires fairly extensive prac-
tice, the subjects in this study performed hundreds of interval specific trials over
eight days of training.

Other studies in the motor domain have demonstrated learning of both peri-
odic and aperiodic motor patterns. In one such study (Laje et al., 2011) subjects
practiced the reproduction of either a periodic motor pattern, composed of a se-
quence of six repeating intervals of 500 ms, or an aperiodic pattern composed of a
sequence of six different intervals in the range of 200 to 800 ms. The data from each
daily training session was used to fit the generalized Weber function by plotting
the variance of the response times of each event within a pattern, against absolute
time squared (Getty, 1975). This analysis provides two sources of variance: a time-
dependent variance source, related to the Weber fraction, and a time-independent
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source often interpreted as motor noise. For both the periodic and aperiodic pat-
terns robust learning effects were evident by a decrease in both variance terms after
five days of training. The overall variance was significantly smaller in the periodic
task, hinting at potential differences between the timing of periodic and aperiodic
patterns.

The above studies, and numerous others, establish that timing of motor re-
sponses in the range of hundreds of milliseconds to a few seconds undergo learn-
ing (Ivry & Hazeltine, 1995; O’Reilly et al., 2008; Planetta & Servos, 2008; Ullen &
Bengtsson, 2003). But, as with the perceptual temporal learning, a key question
for the understanding of the neural basis of temporal motor learning, relates to
whether motor learning leads to generalization to the production of different in-
tervals and patterns.

3.2. Temporal and Cross Sensory-Motor Generalization

The issue of temporal specificity of motor timing learning has not been as carefully
studied as in perceptual timing tasks, but was explicitly addressed in the learning
of motor interval study by Bartolo & Merchant (2009). As mentioned above, in that
study subjects were trained to produce intervals of 450, 650, or 850 ms, but before
and after training they were also tested on their ability to reproduce a wide range of
auditory intervals. There was significant generalization to neighbouring intervals
as revealed by a decrease in the S.D. during the reproduction of untrained inter-
vals. The generalization function was fairly well captured by a Gaussian function
and the width of the generalization curve increased with the duration of the target
interval — suggestive of a Weber-like generalization function.

Other studies have addressed generalization from the perspective of cross
modal transfer from the learning of sensory interval discrimination to motor in-
terval reproduction. Meegan and colleagues (2000) trained subjects on either a
300 or 500 ms two-forced-choice auditory interval discrimination task, after the
training phase subjects performed 300 and 500 ms reproduction tasks. The sub-
jects that were trained on the 300 ms perceptual task exhibited significantly larger
reduction (compared to pretraining) of the S.D. during the reproduction of 300 ms
interval compared to 500 ms interval. Conversely, subjects trained on the 500 ms
discrimination task improved more on the 500 ms compared to the 300 ms motor
reproduction task. A similar study replicated these findings by demonstrating that
learning to discriminate 500 or 800 ms intervals in the somatosensory modality re-
sulted in a significant SD decrease in a motor reproduction task of 500 or 800 ms,
respectively (Planetta & Servos, 2008).

As with the studies that observed spatial generalization above, the demonstra-
tion that training on sensory interval discrimination tasks generalized to the motor
reproduction of the trained intervals, is suggestive of a centralized timing mecha-
nisms, or at least that there may be shared mechanisms between sensory and motor
timing. However, it should be noted that the transfer between sensory and mo-
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tor tasks could be a result of the ability to store the reference interval, as opposed
to shared sensory and motor timing mechanisms per se. Additionally, as with the
study demonstrating that interval discrimination learning can be dissociated by
spatial generalization early in training (Wright et al., 2010), it will be of relevance to
see if the transfer to the motor domain is also dependent on the amount of training.

3.3. Precision Versus Accuracy

Motor timing tasks provide a particularly useful way to dissociate the learning of
temporal precision and temporal accuracy. Precision refers to the reproducibility
of the timed responses, and in motor tasks is generally measured by the standard
deviation or coefficient of variation (the Weber fraction). Accuracy relates to how
close the produced interval is to a target in absolute time. Precision and accuracy in
motor tasks parallel the measure of the slope of the psychometric function (the dif-
ference limen) and the point of subjective equality, respectively (Lapid et al., 2008).
However, most of the sensory studies discussed above have not carefully quantified
changes in the difference limen and point of subjective equality because they were
based on threshold measures determined from the adaptive procedure — which
confounds precision and accuracy. The motor timing literature has often placed
more emphasis on the question of precision, but it is necessary to consider both
when addressing the psychophysical signature of timing and the potential under-
lying neural mechanisms. Indeed a fundamental question relates to whether the
precision and accuracy of motor responses are independent or inseparable.

To date, motor timing learning studies seem to support a dissociation between
the learning of precision and accuracy. For example, the two studies that reported
an interval-specific transfer of perceptual interval discrimination learning to motor
production, reported an improvement in the precision of the trained intervals but
no significant improvement in accuracy (Meegan et al., 2000; Planetta & Servos,
2008). In other words, while training on the discrimination of a 300 ms interval
resulted in subjects being less variable (more precise) during the reproduction of
300 ms intervals, there were not any more accurate.

Practice dependent changes in motor precision and accuracy have also been ex-
amined using a visual task with an implicit timing component (Sohn & Lee, 2013).
In this study subjects were trained to predict the time at which an initially visible
stimulus (moving at a constant speed) would reappear after disappearing behind
an occlusion. In the different conditions of the study, the stimulus was occluded
for intervals ranging from 0.5 to 3.5 s. Separate analysis of the temporal accuracy
and precision revealed a dissociation between these components: the precision im-
proved slowly and consistently across training days, while there was no consistent
long-lasting improvement in accuracy (although there was a short lasting calibra-
tion effect in the presence of feedback). While the lack of accuracy learning could
have been a result of low power (there were four subjects in the experiment), these
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Figure 3. Improvements in precision and accuracy during learning of a complex motor timing task.
Subjects learned to produce an aperiodic spatiotemporal pattern consisting of a sequence of six timed
responses (six component intervals) using four fingers (upper inset in Panel A). (A) Single subject
results from the first (upper graph) and the third (lower graph) day of training. Light dashed lines
represent the response distributions, and the solid lines represent Gaussian fits of the data. (B) Aver-
age (12 subjects) precision (top) and accuracy (bottom) of each element of the pattern across three
days of training. Both the precision (F2,22 = 73, p < 10−6) and accuracy (F2,22 = 7.2, p < 0.005)
exhibited a main effect of training across the three days. Modified from Experiment 2 from Laje et al.
(2011). This figure is published in colour in the online version.

results provide further evidence for a mechanistic dissociation between the neural
mechanisms underlying precision and accuracy of motor timing.

Although the above studies nicely demonstrate dissociations between the ef-
fects of training on precision and accuracy, it is clear that training can result in
improvements in both. For example, Fig. 3 reproduces the results of a study in
which subjects learned a spatiotemporal aperiodic task in which they used four
fingers to reproduce a visually presented spatiotemporal pattern (Laje et al., 2011).
Fitting the distribution of the response times of each of the 6 response events over
a single day with a Gaussian function, revealed a decrease in the SD of the response
times as well as the improvement in the accuracy — that is, the peak of the Gaus-
sian curves are closer to the target times. Group data (Fig. 3B) demonstrates that
there was a significant improvement in both the accuracy and precision across
three days of training.

In addition to the above prospective learning studies, insights into the motor
temporal learning and the precision versus accuracy issue, have been gleaned from
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retrospective learning studies in which the performance of nonmusicians and mu-
sicians has been compared. As one might expect, it has been reported that musi-
cians have better perceptual and motor timing performance than nonmusicians
(Cicchini et al., 2012; Grondin & Killeen, 2009; Rammsayer et al., 2012). For ex-
ample Cicchini and colleagues (2012) reported that in a reproduction task with
intervals ranging from 500 to 1200 ms, percussionists exhibited superior motor
timing and were less influenced by temporal context (i.e., the other intervals used
in the same block of trials). Interestingly the accuracy of the percussionists was su-
perior to that of both the nonmusician and string player musician groups, but the
precision (as measured by the mean variation coefficient) of the string players was
better than that of the percussionists. Another study contrasted motor timing of
nonmusicians and musicians on the longer time scale of 6 to 24 s, and observed
better timing as measured both by precision and accuracy in the musician group
(Grondin & Killeen, 2009).

Although additional experiments are needed, the existing data strongly suggests
that improvement in precision and accuracy of timed motor responses is dissocia-
ble, an observation that constrains the models of temporal processing (see below).

4. Mechanisms and Location of Temporal Learning

4.1. Models and Mechanisms of Temporal Processing

Our goal here is not to provide a comprehensive review of the models and potential
mechanisms underlying temporal processing, thus we refer the reader to previous
reviews that have focused on the neural underpinnings of timing (Allman & Meck,
2012; Buhusi & Meck, 2005; Buonomano & Karmarkar, 2002; Buonomano & Laje,
2010; Coull et al., 2011; Goel & Buonomano, 2014; Mauk & Buonomano, 2004; Med-
ina & Mauk, 2000). Nevertheless, any discussion of perceptual and motor temporal
learning requires consideration of the potential mechanisms underlying timing,
so we will briefly summarize the main theories of temporal processing in order to
place the above studies in context.

As mentioned above a critical issue relating to the neural basis of timing and
to temporal perceptual learning, is often posed as whether timing relies on what
can be considered ‘dedicated’ or ‘intrinsic’ (distributed properties inherent to most
cortical networks) mechanisms (Ivry & Schlerf, 2008). The term dedicated refers
to highly specialized mechanisms — i.e., dedicated circuits would not be involved
in other computations. Additionally, dedicated models are generally taken to be
‘centralized’ (see Buonomano & Karmarkar, 2002), meaning that in some sense a
dedicated system would represent a ‘master’ clock. The terms ‘dedicated’ and ‘in-
trinsic’ are by necessity somewhat imprecise, however, they provide an extremely
useful dichotomy to categorize different views regarding the mechanisms of tim-
ing.



274 D. Bueti, D. V. Buonomano / Timing & Time Perception 2 (2014) 261–289

The prototypical example of a dedicated model of timing is the concept of an
internal clock (Creelman, 1962; Gibbon et al., 1984; Treisman, 1963). In its simplest
form the internal clock framework suggests that some specialized neural circuitry
is composed of an oscillator, and an accumulator that essentially counts the ‘ticks’
of the oscillator providing a linear metric of time. While there is little experimental
support for the notion that timing relies on a centralized pacemaker-accumulator
mechanism, the internal clock model continues to provide a valuable framework
to study the neural basis of timing.

Intrinsic models propose that timing is a general computation of most neural
network. The prototypical example of an intrinsic model of timing is the state-
dependent network (SDN) model (Buonomano, 2000; Buonomano & Merzenich,
1995; Mauk & Buonomano, 2004). Within the SDN framework, timing is more anal-
ogous to the continuously changing dynamics produced by a pebble thrown into
a pond, than to a conventional clock. Networks of neurons are very rich dynami-
cal systems, and as such, changing patterns of activity can be set in motion. The
time-varying nature of these patterns can provide a signature that can be used to
tell time in the same manner that the expanding diameter of the ripples on a pond
provides a measure of how much time has elapsed since the pebble was thrown in.

The first model to propose that timing may be encoded in dynamically changing
patterns of activity was put forth by Mauk in the context of the Marr–Albus–Mauk
model of the cerebellum (Mauk & Donegan, 1997). Specifically, it was proposed
that a stimulus can trigger a dynamically changing pattern of neural activity as a
result of negative feedback within the network (Buonomano & Mauk, 1994; Mauk
& Donegan, 1997; Medina & Mauk, 2000). Such a timing mechanism has been re-
ferred to as a population clock because time is encoded in the changing population
of active neurons within a network (Buonomano & Karmarkar, 2002; Buonomano
& Laje, 2010). SDN models emphasize that in addition to the changing patterns of
activity within a network, neurons and synapses have a large repertoire of naturally
time-varying properties on the subsecond scale, perhaps most notably short-term
synaptic plasticity — a form of plasticity in which the strength of synapses in-
creases or decreases in a use-dependent manner on the time scale of hundreds of
milliseconds. Thus the state of a network includes not only an ‘active state’ (which
neurons are firing) but also a ‘hidden state’ (time-varying neural properties such as
short-term synaptic plasticity). Indeed, experimental evidence suggests that short-
term synaptic plasticity underlies some forms of neuronal interval selectivity (Carl-
son, 2009; Edwards et al., 2007; Goel & Buonomano, 2014; Kostarakos & Hedwig,
2012).

A number of experimental studies have reported that the dynamic changes in
the activity pattern of neural networks can indeed encode time (Crowe et al., 2010;
Jin et al., 2009; Lebedev et al., 2008). But it is important to note that while tim-
ing is proposed to be an inherent property of neural network dynamics in the SDN
model, in order for these dynamics to be used to actually solve temporal problems,
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the dynamics must be readout by downstream neurons that can fire at specific
time points. In the context of the cerebellar model, this readout is accomplished by
appropriately adjusting the synaptic weights from the dynamically changing pop-
ulation of granule cell to the ‘readout’ Purkinje cells (Buonomano & Mauk, 1994;
Mauk & Donegan, 1997; Medina & Mauk, 2000). Similarly in the SDN model, the
readout is achieved by adjusting the weights of excitatory neurons in the corti-
cal circuits to downstream neurons that can then function as interval detectors
(Buonomano, 2000; Buonomano & Merzenich, 1995). Under the framework of the
SDN model, timing of different intervals within the same task — e.g., the discrimi-
nation of 100 or 250 ms auditory interval — would rely on different neurons within
the same circuit. Thus learning-dependent improvements of the discrimination of
a 100 ms interval, requires tuning downstream neurons to readout the relevant net-
work states corresponding to the 100 ms interval — leading to temporally specific
learning.

Numerous other mechanisms of timing have been proposed (Ahrens & Sahani,
2011; Allman et al., 2012; Buhusi & Meck, 2005; Fiala, Grossberg, & Bullock, 1996;
Matell & Meck, 2004) including the proposal that at the onset of a stimulus, mul-
tiple oscillators that beat at different frequencies are engaged, and that time is
readout from these oscillators by coincidence detectors that tell time through the
beats among the oscillators (Allman & Meck, 2012; Coull et al., 2011; Matell & Meck,
2004; Miall, 1989). While this model does not fit neatly into a dedicated or intrin-
sic model framework, the multiple oscillator model is in a sense dedicated because
it invokes a specialized array of independent oscillators of different frequencies.
But the multiple oscillators model has also been placed in a more intermediate
hypothesis in which timing mechanisms are neither entirely distributed nor fully
centralized. This intermediate view hypothesizes the existence of a core-timing
network represented by the basal ganglia-cortico-thalamic circuit that interacts
with context-dependent brain regions, i.e., regions that are selectively engaged de-
pending on the different task requirements (Merchant et al., 2011, 2013).

Another notion, one which has considerable experimental support, is that time
may be encoded in the linear changes of neurons firing rate (Durstewitz, 2003;
Leon & Shadlen, 2003; Quintana & Fuster, 1992; Rainer et al., 1999). Indeed, ramp-
ing activity has been observed in the neurons of a number of different areas during
timing tasks (Brody et al., 2003; Janssen & Shadlen, 2005; Lebedev et al., 2008;
Leon & Shadlen, 2003; Niki & Watanabe, 1979; Quintana & Fuster, 1992; Schnei-
der & Ghose, 2012). Ramping models (Durstewitz, 2003; Reutimann et al., 2004;
Simen et al., 2011) could potentially fit into either dedicated or intrinsic frame-
work depending on the mechanisms responsible for such dynamics and on how
ubiquitous these mechanisms are throughout the nervous system.

In the context of this review on temporal perceptual learning it is important to
consider how the above models account for learning. While some of the models
do not explicitly discuss learning, others explicitly or implicitly place the locus of
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learning at the level of the readout units. For example, the state-dependent net-
work and striatal beat frequency models share the property that output units must
learn the specific patterns of activity of the timing networks/units (Buonomano
& Mauk, 1994; Matell & Meck, 2004; Mauk & Donegan, 1997). This learning fits
well into conventional neurocomputational frameworks in which unsupervised or
supervised learning rules can be used to train output neurons to recognize the rele-
vant patterns. The other option is that learning may occur at the level of the neural
circuits that are actually doing the timing as opposed to reading out the temporal
information (Haß et al., 2008; Laje & Buonomano, 2013). Indeed state-dependent
network models assume there is plasticity also within the recurrent circuit — but
this plasticity would be slower to develop and come into play only with extensive
practice. Also in ramping models the rate of the change in firing rate can be tuned
in a manner that reflect learning by potentially altering the behavior of the timer
circuits themselves (Durstewitz, 2003; Reutimann et al., 2004; Simen et al., 2011).

It remains far from clear how the brain tells time, thus it is an open question
whether dedicated or intrinsic frameworks best capture the neural mechanisms
of temporal processing. Nevertheless, given the diversity of areas (see below) and
mechanisms that have been implicated in timing, it is highly unlikely that a single
well-defined brain area is universally responsible for all forms of timing. We favor
the view that timing is an intrinsic computation of neural circuits, and that the
circuits underlying timing can be distinct (but possibly shared) depending on the
task and modality being invoked.

4.2. Neurophysiological Correlates of Temporal Learning in Humans

In humans, the neurophysiological changes associated with temporal learning re-
main unclear. This is due in large part because, to the best of our knowledge only
two studies have explicitly looked at brain plasticity induced by temporal learn-
ing performing pre- and post-training measurements: a magnetoencephalography
(MEG) and a magnetic resonance imaging (MRI) study (Bueti et al., 2012; van
Wassenhove & Nagarajan, 2007).

In the first of these studies human volunteers were trained for three days (for
a total of 2400 trials) in a temporal discrimination task of auditory stimuli (trains
of four tones separated by 200 ms) while MEG recordings were acquired. Tempo-
ral training led to improvements of discrimination thresholds only for the trained
condition and was associated with amplitude changes of early auditory evoked re-
sponses (i.e., m100, Van Wassenhove & Nagarajan, 2007). This result suggests that
plasticity in an auditory timing task can occur locally in early auditory cortices.

A similar result but in the visual domain was reported in a recent MRI study
showing an increase of the hemodynamic response in bilateral mid-occipital gyri
after training with a visual temporal interval (Bueti et al., 2012). In this study
healthy volunteers were trained for four days (one hour per day, 570 trials) to dis-
criminate 200 ms visual temporal intervals. Before and after training structural
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as well as functional MRI data were acquired while participants were tested with
stimuli of the trained (vision) and untrained sensory modality (audition) and with
the trained (200 ms) and untrained temporal intervals (100, 400 ms). Consistent
with previous psychophysical results, temporal learning was found to be duration
specific and to partially generalize from the visual to the auditory modality. At neu-
rophysiological level the hemodynamic response to the trained interval was greater
in post compared to pre-training session, in visual areas for the visual intervals
(i.e., trained sensory modality) and in the insular cortex for both the visual and the
auditory (i.e., untrained modality) intervals (see Fig. 4A). Generalization to the au-
ditory stimuli was associated with the activation of the left inferior parietal cortex
(Fig. 4B). Training-related changes were also observed in grey-matter volume and
white-matter connectivity of the right cerebellar cortex (cerebellar lobules VIIa
and VIIIa, see Fig. 4C). Moreover both structural and functional changes correlated
with changes in behavioral performance.

These findings show, first, that a relative short temporal training could produce
both functional and structural changes not in a single region but in a network of
brain areas. Some of these regions are modality specific others are modality inde-
pendent. Second, that the brain changes correlated with the trained interval can
be dissociated from those correlated with the cross-sensory generalization. This
neurophysiological dissociation is in line with previous behavioral studies show-
ing that learning of the trained interval and spatial generalization represents an
early and a late stage of the learning process, respectively (Burk & Humes, 2007;
Wright et al., 2010). Concerning this particular MRI finding we can hypothesize
that learning-related activations observed for the trained visual modality (i.e., in-
sula and visual cortices) reflect time-specific processes associated with perceptual
learning, while the activation of the parietal cortex specific for audition may relate
to ‘intermodal transfer’ and generalization. More generally we can also speculate
that similarly to the motor learning domain, where different learning stages engage
distinct brain regions (Hikosaka et al., 1999; Hikosaka et al., 2002), the temporal
training of a specific interval requires the involvement of local/modality specific
temporal mechanisms (e.g., visual or auditory regions) whereas spatial generaliza-
tion engages high-level/amodal cores of timing networks (e.g., parietal and premo-
tor cortices).

In accord with the finding that parietal cortex is activated during generalization
of temporal learning across sensory modalities is the observation that transcra-
nial stimulation of the parietal lobe paired with a behavioral training, leads to
improvements in both the trained (i.e., numerosity discrimination) and the un-
trained tasks (i.e., temporal and spatial discrimination; Cappelletti et al., 2013).
This result has been interpreted as suggesting the existence in the parietal cortex of
a neural substrate that is shared between numerical (i.e., the trained task), tempo-
ral and spatial abilities (i.e., the untrained tasks). The key question not only of this
particular study but in general of all learning studies is the following: what is actu-
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Figure 4. Timing-related plasticity in the human brain. (A, B) Brain areas showing training-related
plasticity as measured by fMRI. In both panels the contrast tested is: (trained duration–untrained
duration) PRE > (trained duration–untrained duration) POST. Statistical threshold was set to
p−FWE < 0.05 corrected for multiple comparisons. Activations are overlaid on the single subject
T1-MNI template. For all cluster of voxels we plot the parameter estimates for the �T 1 condition
(i.e., the actual discrimination threshold) in pre (light shade) and post-training (dark shade) fMRI
sessions. A.U. is arbitrary unit. (A) Upper row shows left and right mid-occipital regions activated
during the visual task (dark bars). The lower row shows the left posterior insula activated in both
the visual (dark) and the auditory (light) task. (B) Left inferior parietal cluster activated only in the
auditory task (light). (C) Training-related plasticity as measured by grey and white-matter structural
indexes. The panel shows right cerebellar clusters where grey matter volume (GM) and fractional
anisotropy (WM) were greater in post compared to pre-training session. Statistical threshold was set
to p−FWE < 0.05 corrected for multiple comparisons. For both clusters we also show the correla-
tions between the structural indexes (i.e., T1 post–T1 pre/T1 pre and FA post–FA pre/FA pre) and the
behavioral performance. Clusters are overlaid on the single subject T1 MNI template. Modified from
Figures 2 and 3 from Bueti et al. (2012). This figure is published in colour in the online version.

ally shared between trained and untrained conditions (different tasks or different
stimulus dimensions) and what is transferred during generalization? Are core cog-
nitive abilities shared, e.g., a common representation? Or are secondary aspects of
the tasks shared, like the response selection or the strategy used? The answer to
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Figure 4. (Continued.)

these questions remains unknown. However these considerations relative to the
object of the generalization have to be taken into account when interpreting spa-
tial generalization in temporal learning studies. In the temporal learning context,
spatial generalization can be interpreted as reflecting the existence of a common
timing network only if the transfer during generalization concerns the duration
representation. However, if the transfer is about the strategy used to perform the
task or other non-temporal components of it, then its presence cannot be used to
make claims about the neural substrate of temporal representations.
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Finally, a related issue in interpreting the findings of both neurophysiological
and behavioral temporal learning studies concerns the specificity of learning. Per-
ceptual and motor timing tasks are characterized by the presence of non-temporal
components (e.g., memory, decision and motor components) and behavioral train-
ing could, in principle, affect any of them. To overcome this interpretational issue
fMRI studies should always compare conditions that are matched across cognitive
components (i.e., attention, memory and motor responses) or alternatively com-
pare groups that are trained on different stimulus features (e.g., time and pitch).

4.3. Neurophysiological Correlates of Temporal Learning in Animals

Our knowledge of the neurophysiological changes associated with temporal learn-
ing derives mainly from animal studies. Some of the earliest of these studies ex-
plored temporal motor learning in the cerebellum as revealed by eyelid condi-
tioning. In eyelid conditioning a neutral stimulus such as a tone (CS) is repeat-
edly paired with an unconditioned stimulus (US) such as a puff of air to the eye,
which evokes a reflex eyelid response. The repeated pairing of the tone and uncon-
ditioned stimuli leads to the acquisition of a conditioned response, i.e., the tone
stimulus elicits eyelid closure. Importantly, the timing of the eyeblink response is
strongly dependent on the time interval between the CS and US, for example if the
CS-US interval is 500 ms, the timing of the learned eyeblink response is a bit under
500 ms (Mauk & Buonomano, 2004; Mauk et al., 2000). Lesions of the cerebellar
cortex have been shown to spare the conditioned responses but to abolish response
timing (Medina et al., 2002; Perrett et al., 1993). In the Marr–Albus–Mauk model of
the cerebellum, the timing is hypothesized to arise from the time-varying patterns
of granule cell activity and the temporally specific decrease in the activity of the
Purkinje neurons. This decrease is mediated by depression of the granule to Purk-
inje cell synapses that are activated at the time of the reinforcing unconditioned
stimulus (Mauk & Donegan, 1997).

More recently animal studies have explicitly examined the neural correlates of
temporal learning. In one of such studies, rats were trained to associate the stim-
ulation of one of the two eyes with either a early (approximately 1 s) or a late
(approximately 2 s) reward (the two rewards where actually a function of a low
or high number of licks, which resulted in early or late rewards; Shuler & Bear,
2006). The firing pattern of V1 neurons after visual stimulation was modulated
by these two different reward delays (43% of the recorded neurons). For example,
some neurons showed sustained firing rate to a stimulus, and the duration of the
firing reflected the interval between that stimulus and the reward. Reward timing
neurons in V1 were not observed in naïve rats. This last result has led to the con-
clusion that timing activity in primary visual cortex is a consequence of a learning
process. In a more recent work this research group demonstrated that it was pos-
sible to observed ‘learned’ timed responses by pairing electrical stimulation and
acetylcholine in visual cortex slices (Chubykin et al., 2013). This finding is consis-
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tent with another in vitro study showing that the chronic presentation of a specific
interval to cortical circuits in culture, alters the temporal profile of evoked activity
in a manner that reflects the experienced interval (Johnson et al., 2010). These two
studies demonstrate that in vitro cortical circuits can in a manner of speaking learn
temporal intervals, and provide some of the most compelling evidence that timing
is a local and intrinsic computation of neural circuits.

In the last part of this review we focus on animal works that did not explic-
itly study temporal learning because they did not, for example, contrast pre- and
post-training neural responses, but made extensive use of training. These studies
often focused on the neural basis of timing in animals that were trained for several
months before electrophysiological recording. In the majority of cases it is difficult
to establish the extent to which these electrophysiological findings reveal mech-
anisms that are independent from learning. Despite these caveats, these studies
provide valuable insights to our understanding of the neural mechanisms under-
lying temporal learning (Table 2).

As discussed in Sections 2 and 3 both perceptual and motor temporal learning in
the subsecond range are duration selective, i.e., training increases duration sensi-
tivity and reduces performance variability exclusively for the trained interval. This
selectivity seems to suggest the existence of neurons tuned to specific temporal in-
tervals and indicate duration-sensitive tuning as a possible mechanism underlying
the active encoding of time in the millisecond/second range.

The existence of duration tuning has been hypothesized by theoretical models
(Ivry & Richardson, 2002; Matell & Meck, 2004), suggested by behavioral findings
in humans (Heron et al., 2012), but only recently has been supported by neuro-
physiological observations. In monkey pre-supplementary motor area (pre-SMA)
neurons selectively firing for specific temporal intervals have been observed (Mita
et al., 2009). In this experiment, monkeys were trained to hold down a response
key for 2, 4 or 8 s. The holding time was signaled by a color cue. During the presen-
tation of the color cue, two main classes of neurons were described in pre-SMA:
neurons selectively responsive to the different holding times (‘time selective’, 35%
of neurons responsive to the color cue) and neurons with ramping activity pro-
portional to the different time intervals (47% ‘time graded neurons’, Mita et al.,
2009). Premotor neurons selective to different temporal intervals but in the sub-
second range (range tested 450–1000 ms) and across different motor tasks (i.e.,
finger tapping and interval reproduction) and sensory modalities (visual and au-
ditory) have also been recently described by Merchant and colleagues (Merchant
et al., 2013). In this study the authors trained monkeys in two distinct motor tim-
ing tasks. In the synchronization-continuation task, monkeys had to synchronize
a finger movement (a button press) with the presentation of a visual or an audi-
tory sound; after a few synchronized movements the stimuli driven the movements
stopped and monkeys continued tapping at the same stimulus rate. In the repro-
duction task, monkeys had to reproduce with two successive finger presses the
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Table 2.
The neurophysiology of temporal learning. Summary of human and animal studies investigating the
neural basis of temporal processing by using temporal learning protocols (human studies) or inves-
tigating time behavior after learning (animal studies). Studies are listed according to the task used,
the time range tested and the brain regions involved in time computations. TD = temporal discrim-
ination, (cs) = constant stimuli, (ap) = adaptive procedure, CC = classical conditioning, OCDt =
orientation change detection task, DEMt = delayed eye movement task, REx = reward expectation,
P = production, SST = sequential saccade task, FT = finger tapping, STS = self timed saccades,
2ITG = 2 intervals temporal generalization, DMt = delay memory task

Studies Task Time (s) Areas

Humans
Van Wassenhove & Nagarajan, 2007 TD (cs) 0.2 auditory
Bueti et al., 2012 TD (ap) 0.1-0.4 visual, insula, premotor,

cerebellar cortex
Animals

<5 s
Perret et al., 1993 CC 0.15, 0.75 cerebellar cortex
Medina et al., 2000 CC 0.25-0.75 cerebellar cortex
Ghose & Maunsell, 2002 OCDt 1-3 V4
Leon & Shadlen, 2003 TD (cs) 0.3, 0.8 LIP
Jassen & Shadlen, 2005 DEMt 1-2 LIP
Shuler & Bear, 2006 Rex 1-2 V1
Lebedev et al., 2008 P 2.5, 4.5 motor-premotor
Genovesio et al., 2009 TD (cs) 0.2-1.2 prefrontal
Jin et al., 2009 SST 0.4-0.8 prefrontal, striatum
Mita et al., 2009 P 2-8 pre-SMA and SMA
Merchant et al., 2011 FT 0.45-1 medial premotor
Schneider & Ghose, 2012 STS 1 LIP
Chubykin et al., 2013 Rex 1-2 V1
Merchant et al., 2013 P, FT 0.45-1 premotor

>5 s
Matell et al., 2003 2ITG 10, 40 striatum
Pastalkova et al., 2008 DMt 10, 20 hippocampus

duration of a presented visual or auditory interval. The results show that a pro-
portion of the recorded premotor neurons fired selectively for different temporal
intervals. Interestingly this ‘interval selectivity’ was invariant across the two tasks
and the sensory modalities used to drive the timing behavior. This result suggests
the existence in premotor cortex of an abstract representation of duration. Based
on these findings we can further speculate that duration sensitive neurons in pre-
motor cortex reflect an active reconstruction, i.e., a read-out mechanism, of explicit
duration codes from relevant temporal signal sources that comes from elsewhere in
brain (perhaps sensory regions). While most of the above primate studies did not
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explicitly study temporal learning it is fair to assume that many of the observed
responses are likely a result of the training.

As summarized in Table 2, timing-related activity and plasticity has been ob-
served in many brain regions: in visual cortices (Chubykin et al., 2013; Ghose &
Maunsell, 2002; Shuler & Bear, 2006) in the lateral intraparietal area (LIP, Janssen
& Shadlen, 2005), in the premotor cortex (Lebedev et al., 2008; Merchant et al.,
2013; Mita et al., 2009), in the prefrontal cortex (Genovesio et al., 2009; Jin et al.,
2009), in the striatum (Jin et al., 2009; Matell et al., 2003) and also in the hip-
pocampus (Kim et al., 2012; Pastalkova et al., 2008). Thus these studies, together
with the studies in the two previous sections, suggest that temporal learning en-
gages a number of different brain areas including sensory, motor and associative
cortices and relies at least in part on the emergence of temporally-tuned neurons.

5. Conclusions

Here we have reviewed the literature on temporal perceptual learning in humans
focusing primarily on the subsecond time scale. The studies reviewed allow us to
formulate two general conclusions:

1. In both the sensory and motor domains timing undergoes robust learning.
Temporal learning, however, generally requires relatively long practice peri-
ods as evidenced by the fact that the majority of learning studies have trained
subjects over multiple days.

2. Temporal perceptual learning is generally temporally specific, that is, the im-
provements produced by training are often limited to the trained (or nearby)
intervals.

This second point is perhaps the single most important principle to be derived to
date from the studies of temporal perceptual learning, as it provides key insights
into the potential mechanisms underlying timing and temporal perceptual learn-
ing. For example, twenty years ago one might have hypothesized that temporal
perceptual learning was a result of the increased precision (and accuracy) of a
centralized timing circuit. Using a stopwatch analogy, such a mechanism would
essentially correspond to creating a better stopwatch, and thus be expected to im-
prove timing across a wide range of intervals. The studies reviewed above strongly
argue against such a scenario, and suggest that whatever the underlying mecha-
nisms, temporal perceptual learning is generally interval specific. This temporal
specificity likely relies primarily on improvements on ‘reading out’ the relevant
temporal signatures (e.g., the neural dynamics) generated by the neural circuits
that actually mark time.

A third point that emerges from the literature is that the benefit of learning can
be transferred from a trained stimulus to an untrained condition (i.e., spatial gen-
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eralization). This can be a stimulus of a different sensory modality, pitch, spatial
position, and even a different task. However, it is also evident that generalization
can be dissociated from temporal learning (Wright et al., 2010). Thus generaliza-
tion and temporal learning appear to be different stages of the learning process and
may be associated with different neural substrates.

The field of the neural basis of temporal processing remains in its infancy as even
the most basic questions regarding timing remain unanswered. The unanswered
questions include which parts of the brain are involved in timing and temporal
learning. Although it is still to early to answer these questions, based on the find-
ings reviewed here and on the fact that more brain areas than not (Table 2) have
been implicated in timing, we favor the view that timing is a distributed and intrin-
sic property of the brain. Thus, which parts of the brain are responsible for temporal
learning will depend in part on the modality, task, and time-scale of interest.

Temporal learning studies will continue to provide an essential approach to
constrain and study how the brain tells time, and future work should further em-
phasize the need to study the generalization of temporal perceptual learning and
characterize its psychophysical signatures (Shi et al., 2013). Lastly, we emphasize
that elucidating how timing improves as a function of experience will be a neces-
sary step toward understanding some of the most important computational tasks
the brain performs, because the ability to discriminate and produce temporal pat-
terns allows us to communicate, appreciate and play music, anticipate events in
our environment, and execute complex spatiotemporal motor patterns.
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