
Learning and Generalization of Auditory Temporal–Interval
Discrimination in Humans

Beverly A. Wright, Dean V. Buonomano, Henry W. Mahncke, and Michael M. Merzenich

Keck Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, California 94143-0732

The sensory encoding of the duration, interval, and order of
different stimulus features provides vital information to the ner-
vous system. The present study focuses on the influence of
practice on auditory temporal–interval discrimination. The goals
of the experiment were to determine (1) whether practice im-
proved the ability to discriminate a standard interval of 100
msec bounded by brief 1 kHz tones from longer intervals, and,
if so, (2) whether this improvement generalized to different tonal
frequencies or temporal intervals. Learning was examined in 14
human subjects using an adaptive, two-alternative, forced-
choice procedure. One hour of training per day for 10 d led to
marked improvements in the ability to discriminate between the
standard and longer intervals. The generalization of learning
was evaluated by independently varying the spectral (tonal
frequency) and temporal (interval) components of the stimuli in

four conditions tested both before and after the training phase.
Remarkably, there was complete generalization to the trained
interval of 100 msec bounded by tones at the untrained fre-
quency of 4 kHz, but no generalization to the untrained intervals
of 50, 200, or 500 msec bounded by tones at the trained
frequency of 1 kHz. Thus, these data show that (1) temporal–
interval discrimination using a 100-msec standard undergoes
perceptual learning, and (2) the neural mechanisms underlying
this learning are temporally, but not spectrally, specific. These
results are compared with those from previous investigations of
learning in visual spatial tasks, and are discussed in relation to
biologically plausible models of temporal processing.
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The sensory encoding of temporal information such as the dura-
tion, interval, and order of different stimulus features provides
vital information to the nervous system. This is clearly illustrated
by the ever-increasing evidence of the importance of temporal
cues in the perception of speech. The identification of individual
consonant–vowel syllables correlates with the interval between air
release and vocal cord vibration (e.g., “ba” versus “pa”; Lisker and
Abramson, 1964), the duration of frequency transitions (e.g., “ba”
versus “wa”; Liberman et al., 1956), and the silent time between
consonants and vowels (e.g., “sa” versus “sta”; Dorman et al.,
1979). Furthermore, prosodic cues such as pauses, the duration of
speech segments, and speaking rate influence semantic content
(Lehiste et al., 1976). Indeed, speech can still be understood even
when the available cues are primarily temporal (Shannon et al.,
1995), but not when the temporal cues are removed either by
manipulations of the speech signal (Drullman et al., 1994a,b) or
by impairments of temporal processing in the perceiver (Tallal
and Piercy, 1973).

Most of the temporal cues involved in speech perception fall on
a time scale of tens to hundreds of milliseconds. Relatively little is
known about the neural mechanisms underlying temporal pro-
cessing on this scale (for review, see Ivry, 1997). The processes
used in these temporal tasks, however, must differ from those used

in spatial tasks. In a purely spatial task, all the relevant informa-
tion is coded in the spatial pattern of active input fibers. For
example, in a visual vernier acuity task, the stimuli to be discrim-
inated are slightly displaced in space and, as a result, activate
different spatial groups of photoreceptors in the retina. Similarly,
in an auditory frequency discrimination task, the stimuli to be
discriminated activate different spatial groups of hair cells on the
basilar membrane. Performance in these tasks could therefore
depend on detecting the activation of spatially distinct popula-
tions of peripheral neurons. In contrast, in a purely temporal task,
all the relevant information is coded in the temporal pattern of
the active input fibers. For example, in a temporal–interval dis-
crimination task each temporal interval is often marked by a pair
of stimuli that activate the same input fibers. Thus, performance
on this task cannot depend directly on the detection of spatially
distinct populations of peripheral neurons. The relevant informa-
tion instead must be extracted from the temporal activity of the
input fibers and coded in a form that can be used to solve the task.

The present study focuses on the influence of practice on the
human discrimination of auditory temporal intervals in the milli-
second time range. We undertook this project because very little
is known about the learning of temporal tasks and because the
psychophysical features of learning have the potential to provide
insight into the neural encoding of temporal information. The
specific goals of this experiment were to determine (1) whether
practice improved the ability to discriminate between temporal
intervals marked by tones of one frequency, and, if so, (2) whether
this improvement generalized to intervals marked by tones of a
different frequency or to intervals of different duration. The
results show that the ability to discriminate longer temporal
intervals from a 100 msec standard improves with practice and
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that this improvement generalizes to an untrained frequency, but
not to untrained standard intervals.

MATERIALS AND METHODS
Subjects. Fourteen normal-hearing volunteers (10 females) between the
ages of 21 and 46 years served as subjects. Subjects S4 and S3 were the
second and third authors. The remaining subjects were paid for their
participation. No subject had any previous experience in psychoacoustic
or interval-discrimination tasks.

Stimuli. The task is illustrated schematically in Figure 1 A. On each trial,
two tone pips were presented in each of two observation periods. In one
observation period, the tone pips were separated by a fixed temporal interval,
t, referred to as the standard interval. In the other observation period,
termed the comparison interval, the tone pips were separated by a temporal
interval equal to t plus a variable, always positive, Dt. The comparison
interval was randomly presented in either the first or the second observation
period. The subject was asked to indicate which of the two observation
periods contained the comparison (longer) interval by pressing a key on a
computer keyboard. The response was not timed. The comparison interval
was adjusted adaptively across trials (see Procedure) to determine the
threshold Dt needed to discriminate the comparison from the standard
interval.

Figure 1 B shows schematic illustrations of the five listening conditions.
The tone pips were presented at 1 kHz at standard intervals of 50, 100,
200, and 500 msec and at 4 kHz at a standard interval of 100 msec.

Each tone pip had a total duration of 15 msec, including 5 msec rise/fall
ramps, and was always presented in zero phase. The temporal interval
between the two pips was measured from the onset of the first pip to the
onset of the second pip. The level of each pip was 86 dB sound pressure
level. The onsets of the first tone pips in the first and second observation
intervals were separated by 900 msec for standard intervals shorter than
500 msec and by 1250 msec for the standard interval of 500 msec. Each
observation period was marked on a computer screen by a visual display.
Visual feedback was provided after each trial.

The tone pips were digitally generated in the frequency domain using
a digital-signal-processing board (TDT AP2) and a sampling period of 40
msec (25 kHz) for standard intervals shorter than 200 msec or 60 msec
(16.7 kHz) for the standard interval of 500 msec. The tone pips were
delivered to a 16-bit digital-to-analog converter (TDT DD1), followed by
an anti-aliasing filter (8.5-kHz low-pass, TDT FT5) and an attenuator

(TDT PA4). They were presented through the left ear piece of
Sennheiser HD265 headphones in circumaural cushions.

Procedure. The experiment consisted of a pretest, a training phase, and
a post-test. In the pre- and post-tests, the threshold for interval discrim-
ination was measured in all 14 subjects in three conditions: 100 and 200
msec at 1 kHz and 100 msec at 4 kHz. Thresholds were also measured in
six of the subjects (S1, S2, S5, S9, S10, and S13) in two additional
conditions: 50 and 500 msec at 1 kHz. The training phase occurred
between the pre- and post-tests. It consisted of 1 hr of practice per day for
a minimum of 10 d in the 100 msec at 1 kHz condition.

Within each 60-trial block, the comparison interval was adjusted adap-
tively by decreasing Dt after every three consecutive correct responses and
increasing Dt after each incorrect response. The Dt values at which the
direction of the change in Dt reversed from decreasing to increasing or
increasing to decreasing, referred to as reversals, were noted. The first
three reversals of each block of trials were discarded, and the 79% correct
point on the psychometric function was estimated by taking the average
value of the remaining reversals (Levitt, 1971). To ensure reliability, no
estimate was calculated if there were fewer than four remaining reversals.
Throughout this paper, threshold is expressed as the Dt needed to achieve
79% correct discriminations, divided by t—a Weber fraction. Thus, a
threshold of 0.2 for a standard interval of 100 msec indicates that the
subject could discriminate 120 msec from 100 msec intervals 79% of
the time.

For subjects S6–S14, the step size was 10% of the standard interval
until the third reversal and was 1% of the standard interval thereafter.
For these subjects, the comparison interval at the start of each block of
trials was always equal to 0 msec, forcing the subject to guess on the first
trial. For subjects S1–S5, for all conditions, the step size was 3 msec until
the third reversal and was 1 msec thereafter. For these subjects, the
starting comparison interval was initially 20% of the standard interval
plus 10 msec. This interval was adjusted after the first block in each
condition during the pre- and post-tests, and between sessions during the
training phase, to be the previous threshold plus 10 msec.

Five or six blocks (300–360 trials) were collected in each condition
during the pre- and post-tests. During these tests, the conditions were all
presented in random order for subjects S6–S14, but the trained condition
was always presented first, followed by the other conditions in random
order, for subjects S1–S5. Fifteen blocks (900 trials) were collected on
each training day. Approximately 6% of the blocks from the pre- and

Figure 1. A, Schematic diagrams of the stimuli presented in the standard (top) and comparison (bottom) intervals in each two-interval forced-choice trial.
B, Schematic diagrams of the standard intervals in the five conditions (top to bottom): 50, 100, 200, and 500 msec at 1 kHz and 100 msec at 4 kHz.
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Figure 2. Learning results. The threshold for interval discrimination in the trained condition (100 msec at 1 kHz) as a function of the number of days
of training. Threshold is expressed as the D millisecond value at threshold divided by the standard duration. Performance is shown for each individual
subject in A and for the mean of all subjects in B. The error bars represent 61 SEM within-subjects (A) and across-subjects (B). Note that the ordinate
range differs across A and B.
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post-tests and 2% of the blocks from the training phase were discarded
because of an insufficient number of reversals. Despite the differences in
the procedures used with subjects S6–S14 and S1–S5, the results of the
two groups were quite similar. Therefore, the data of both groups were
combined in the analyses reported here.

RESULTS
The first purpose of this experiment was to determine whether
practice could improve auditory interval discrimination. The re-
sults of each subject during the training phase are plotted in the 14
panels of Figure 2A. The open squares indicate the interval-
discrimination threshold for the trained 100 msec at 1 kHz con-
dition for the first 10 d of training. The error bars represent the SE
within subjects. Figure 2B shows the mean performance of all 14
subjects (open squares) and the across-subject SE (error bars).
The mean function follows a typical learning curve. A one-way
ANOVA with repeated measures performed on the mean data
revealed a statistically significant change in performance over
training days (F13,9 5 8.80, p , 0.0001). Thus, auditory interval
discrimination does improve with practice.

The second purpose of this experiment was to determine the
generalization of learning in interval discrimination. The transfer
of learning was evaluated using the data from the pre- and
post-tests of only those subjects who showed significant learning
during the training phase. An individual subject was judged to
have shown significant learning if the results of that subject (1)
showed a significant change ( p , 0.05) in performance across the
first 10 d of training according to a repeated-measures one-way
ANOVA and (2) yielded a negative slope when fitted with a
regression line. Eleven (S1–S11) of the fourteen subjects demon-
strated learning by these criteria. Their data on the pre- and
post-tests were analyzed to determine the generalization of
learning.

Figure 3 shows the mean interval-discrimination thresholds
across the qualifying subjects for the five conditions measured in
the pre- (white bars) and post-tests (black bars). The data were
analyzed using a two-way ANOVA on condition and time (pretest
versus post-test), with time as a repeated-measures factor. There
was no statistically significant main effect for condition, but both
the main effect for time and the interaction between condition and
time were statistically significant (Table 1). The interaction was
further analyzed using F tests for simple effects (Brunning and
Kintz, 1987). Thresholds differed between the pre- and post-tests
only for the trained condition of 100 msec at 1 kHz and the
untrained condition of 100 msec at 4 kHz. There were no signif-
icant differences for the untrained intervals, although they were
tested at the trained frequency of 1 kHz (Table 2). Additionally,
the threshold change between the pre- and post-tests for the
untrained 100 msec at 4 kHz condition was the only one that was
not significantly different from the change observed for the
trained 100 msec at 1 kHz condition (Table 3).

It seems unlikely that the lack of generalization to the standard
intervals of 200 and 500 msec resulted from the better pretest
performance in those than in the other conditions. Two pieces of
evidence support this view. First, there was also no generalization
to the 50 msec standard interval, for which the mean pretest
threshold was higher than that for the two 100 msec standard
intervals. Second, for standard intervals in the range of 200 to 500
msec, highly trained subjects have thresholds around 0.06 (Getty,
1975; Divenyi and Danner, 1977), whereas the post-test thresholds
of the present subjects were typically considerably poorer at 0.15.
For comparison, for standard intervals near 100 msec, the highly

Figure 3. Generalization results. The mean threshold values in the five
conditions measured before (white bars) and after (black bars) the training
phase. The difference between the pre- and post-test thresholds in the 100
msec at 1 kHz condition represents the learning resulting from the training
in that condition. The corresponding decrease in the 100 msec at 4 kHz
condition reflects the generalization of that learning to an untrained
frequency. The lack of significant differences between the pre- and post-
tests in the remaining conditions indicates that the learning did not
generalize to untrained temporal intervals. Threshold is expressed as the
D millisecond value at threshold divided by the standard duration. The
error bars represent 61 SEM across subjects. Only the data of subjects
who individually demonstrated learning during the training phase are
included. The data of 11 of the 14 subjects tested are represented in three
conditions: 100 and 200 msec at 1 kHz and 100 msec at 4 kHz. The data
of five of the six subjects tested are represented in the other two condi-
tions: 50 and 500 msec at 1 kHz.

Table 1. Pre- versus post-test

df F p

Condition 4,38 2.4 ns
Time 1,38 50.9 ,0.001
Condition 3 Time 4,38 6.1 ,0.001

df, Degrees of freedom; ns, not significant.

Table 2. Pre- versus post-test in each condition

msec kHz df F p

100 1 1,38 42.2 ,0.001
100 4 1,38 29.8 ,0.001
50 1 1,38 1.0 ns
200 1 1,38 0.9 ns
500 1 1,38 0.0 ns

df, Degrees of freedom; ns, not significant.

Table 3. Threshold change between the pre- and post-tests in the
trained versus each untrained condition

msec kHz df F p

100 4 1,38 0.5 ns
50 1 1,38 7.9 ,0.01
200 1 1,38 13.5 ,0.001
500 1 1,38 12.1 ,0.005

df, Degrees of freedom; ns, not significant.
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trained subjects in previous reports, and our own subjects, all have
thresholds near 0.1.

To examine the generalization of learning on a subject by
subject basis, we calculated the correlations between the pre- and
post-test improvements in the trained conditions and each of two
untrained conditions. The results of all 14 subjects were individ-
ually converted into a learning index [(pre-post threshold)/pre-
threshold] before performing the correlations. Each point in Fig-
ure 4 shows the learning index of an individual subject in the
untrained 100 msec at 4 kHz (top panel) and 200 msec at 1 kHz
(bottom panel) conditions plotted against the same measure in the
trained 100 msec at 1 kHz condition. Different symbols mark the data
of the 11 learners (squares) and 3 nonlearners (triangles). The solid

lines represent the least-squared error fits to the data of all 14
subjects. In that analysis, the learning index in the untrained 100
msec at 4 kHz condition correlated significantly with that in the
trained 100 msec at 1 kHz condition (r 5 0.67, p , 0.01). This
indicates that the improvements observed in the untrained 100
msec at 4 kHz condition were related to learning on the trained
condition for every subject and suggests that the same mechanism
underlies the changes at 1 and 4 kHz. In contrast, there was no
significant correlation between the learning index in the untrained
200 msec at 1 kHz condition and that in the trained condition (r 5
20.01, p 5 0.96), demonstrating the independence of the perfor-
mance changes in those two conditions. The dashed lines show the
least-squared error fits to the data of only the 11 subjects classified
as learners (squares). In that analysis, there was no significant
correlation between the trained condition and the 100 msec at 4
kHz (r 5 0.39, p 5 0.25) or the 200 msec at 1 kHz (r 5 0.09, p 5
0.81) conditions. However, the slope of the fitted line in the 100
msec at 4 kHz panel was very similar to that obtained with all 14
subjects. Figures 3 and 4 thus reveal that learning in interval
discrimination transfers to the trained interval presented at an
untrained frequency, but not to an untrained interval presented at
the trained frequency.

DISCUSSION
Temporal perceptual learning
The present results show that (1) practice improves the ability of
adult humans to discriminate longer temporal intervals from a 100
msec standard bounded by tones at 1 kHz, and (2) this learning is
temporally, but not spectrally, specific. The average discrimina-
tion threshold for 14 naive subjects decreased from 0.21 to 0.11
during 10 d of training (Fig. 2). This learning transferred to
performance on the trained 100 msec standard interval bounded
by tones at the untrained frequency of 4 kHz, but not to the
untrained standard intervals of 50, 200, or 500 msec bounded by
tones at the trained frequency of 1 kHz (Figs. 3 and 4).

To our knowlege, these data represent the first systematic
demonstration of perceptual learning and generalization on an
interval discrimination task. Rammsayer (1994) previously re-
ported that there was no significant learning on the same task
using a 50-msec standard interval. His subjects, however, trained
on 50 trials per day for 20 d, whereas the present subjects trained
on 900 trials per day for at least 10 d. Differences in training time
could therefore easily account for these discrepant results. Several
other researchers have noted practice effects while examining
other features of temporal processing (Michon, 1963; Hafter and
Carrier, 1970; Penner, 1976).

Temporal Versus Spatial Perceptual Learning
Most investigations of perceptual learning have examined the
discrimination of visual spatial patterns (Sagi and Tanne, 1994),
including vernier acuity (McKee and Westheimer, 1978; Beard et
al., 1995; Fahle et al., 1995; Poggio et al., 1995; Saarinen and Levi,
1995), spatial frequency discrimination (Fiorentini and Berardi,
1980, 1981), and orientation discrimination (Vogels and Orban,
1985; Karni and Sagi, 1991). Two main conclusions can be drawn
from these studies. First, performance on visual spatial tasks
improves with practice. Most visual spatial learning occurs over
the course of 1 to 2 weeks of practice, with performance changing
most rapidly early in the training period (Karni and Sagi, 1993).
Second, learning in visual spatial tasks seems to be specific to the

Figure 4. Correlation results. Correlation (r) between learning in the
trained (abscissa) and each of two untrained (ordinate) conditions for all
14 subjects. Each point shows the learning index [(pre-post threshold)/pre-
threshold] of an individual subject in the untrained 100 msec at 4 kHz (top
panel ) and 200 msec at 1 kHz (bottom panel ) conditions plotted against
the same measure in the trained 100 msec at 1 kHz condition. Different
symbols mark the data of the 11 subjects classified as learners (squares)
and the three subjects classified as nonlearners (triangles). The lines
represent the least-squared error fits to the data of all 14 subjects (solid
lines) or only the 11 learners (dashed lines). The asterisk in the top panel
indicates the one statistically significant correlation.
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trained task (Sagi and Tanne, 1994). For example, subjects trained
to discriminate the orientation of a texture region in one visual
hemifield showed no improvement when tested with perpen-
dicular stimuli in the trained location or stimuli of the trained
orientation in the opposite visual hemifield (Karni and Sagi,
1991). Thus, at least some spatial perceptual learning is spa-
tially specific.

The present results extend the observation of perceptual
learning to the temporal domain. Just as in visual spatial
learning, temporal–interval discrimination improved with prac-
tice, and most of the learning occurred early in the 10 d of
training. Also as in visual spatial learning, the improvements in
interval discrimination showed some specificity to the trained
task. However, unlike spatial learning, the temporal learning
observed here was highly temporally, but not spatially (spec-
trally) specific.

A more comprehensive comparison of spatial and temporal
learning would require an examination of generalization in the
temporal domain after spatial perceptual learning. For instance, it
is apparently not known if learning to discriminate the visual
orientation of a line transfers to cases in which the line is pre-
sented at untrained durations or velocities. A demonstration of
temporal generalization after spatial perceptual learning, com-
bined with the present report of spatial generalization after tem-
poral learning, would suggest that perceptual learning is specific
only to the trained domain.

Models of Temporal Processing
Separate neural mechanisms seem to be involved in processing
temporal information on the microsecond, millisecond, and sec-
ond time scales. For example, a low frequency sound is localized
by measuring the difference in the time of arrival of the sound at
the two ears. These interaural delays range from 0 to ;650 msec
in humans and thus are an order of magnitude shorter than those
typically involved in speech. It appears that interaural delays are
measured by a specialized neural circuit in the brainstem that
combines a range of axonal path lengths with sharply tuned
coincidence detectors to form an array of delay lines (Jeffress,
1948; Carr, 1993). At the other extreme, time estimation tasks
generally require the discrimination of time intervals longer than
500 msec. Pharmacological and cognitive manipulations indicate
that the as yet unknown neural mechanisms involved in time
estimation may differ from those used for the discrimination of
shorter intervals. Benzodiazepines and the D2 antagonist remo-
xipride make temporal discriminations more difficult for 1 sec, but
not for 50 msec, standard intervals (Rammsayer, 1992, 1993).
Similarly, increasing cognitive load by requiring subjects to simul-
taneously perform a visual task interferes with the ability to
discriminate auditory intervals at a standard duration of 1 sec, but
not of 50 msec (Rammsayer and Lima, 1991).

The present study focuses on temporal processing in the inter-
mediate time range of from tens to hundreds of milliseconds. The
encoding of temporal information on that time scale has been
variously attributed to energy integration, internal clocks, neural
delay lines, and the encoding of temporal patterns as spatial ones
via time-dependent neuronal properties.

In one proposed model of interval discrimination, temporal
intervals are represented by the total energy integrated over the
interval. According to this idea, the first tone of a pair marking a
temporal interval produces activity that decays with a certain time
constant such that the total activity produced by the pair of tones
depends on the interval between them. Short intervals produce a

high level of evoked activity and long intervals a low one. This
model predicts that varying the intensity of either the first or
second tone of the pair would degrade temporal processing, but
that does not seem to be the case (e.g., Creelman, 1962; Allan and
Kristofferson, 1974; Divenyi and Danner, 1977; Rammsayer,
1994). Thus, interval discrimination on the millisecond scale ap-
pears to depend on the direct measurement of the temporal
interval.

One popular proposal of the mechanism underlying the direct
measurement of temporal information is that the passage of time
is encoded by an internal clock (Creelman, 1962; Treisman, 1963;
Church, 1984). Internal clocks are hypothetical neural pace-
makers that generate pulses recorded by a counter. Temporal
intervals are measured by the number of registered pulses. The
simplest clock models hold that the clock should be shielded from
external factors to ensure reliability, and, thus, these models do
not predict the perceptual learning reported here. A modified
clock model in which variability in the clock pulses produces
suboptimal performance could attribute the perceptual learning
to a reduction in this variability, but would not be consistent with
the observed interval-specific generalization of learning. One
more complex clock model consists of two stages (Treisman et al.,
1990); the first stage produces pulses at a fixed frequency, and the
second modulates the pulse frequency according to the task de-
mands. Such a model could account for the present results if it
were assumed that the learning occurred at the second stage,
perhaps attributable to a reduction in variability, and that there
were independent first-stage oscillators dedicated to different base
frequencies. In partial support of these assumptions, Treisman et
al. (1994) reported electroencephalographic evidence of multiple
first-stage oscillators.

The direct measurement of temporal information also has been
attributed to neural delay lines in which different elements of a
network are assigned different time delays (Braintenberg, 1967;
Tank and Hopfield, 1987; Bankes and Margoliash, 1993). In a
delay line (Jeffress, 1948), responses specific to a particular inter-
val are generated by delaying on a path the response to the initial
stimulus and summing it with the response to the second stimulus.
Only intervals in which the two stimuli are separated in time by an
amount equal to the neural delay generate a response. Different
intervals are encoded by spatially distinct neurons. Cellular prop-
erties other than conduction delays might also function as delay
lines. These properties include slow inhibitory postsynaptic po-
tentials and rebound excitation (Sullivan, 1982; Margoliash, 1983;
Jaffe, 1992), cell threshold (Anton et al., 1991), and intrinsic
oscillations (Fujita, 1982; Miall, 1989).

Buonomano and Merzenich (1995) have previously proposed a
biologically plausible model for temporal processing that differs
from delay-line models in that it does not require a fixed array of
time constants that span the time range of the task in question.
This dynamic network model relies on time-dependent neuronal
properties such as paired-pulse facilitation (PPF) and slow inhib-
itory postsynaptic potentials (IPSPs). PPF refers to a form of
short-term plasticity in which the second of a pair of action
potentials can produce a larger postsynaptic response. Slow IPSPs
refer to GABAB-mediated postsynaptic currents. The time course
of both paired-pulse facilitation and slow IPSPs ranges from tens
to a few hundred milliseconds, the range relevant to the intervals
studied here. The model is conceptually simple. Consider a large
population of interconnected excitatory and inhibitory neurons in
which the excitatory synapses exhibit PPF and the inhibitory
synapses produce both slow and fast IPSPs. The first pulse mark-
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ing the beginning of a temporal interval will activate a subpopu-
lation of neurons and trigger a series of processes including PPF
and slow IPSPs. Therefore, even though the second pulse, mark-
ing the end of the interval, may be identical to the first, it will
activate a different subpopulation of neurons because the net-
work is in a different state as the result of the occurrence of the
first pulse; some synapses will be facilitated and others will be
inhibited. Computer simulations have indicated that such a
model can perform interval discrimination tasks although the
connectivity of the network is random and there is no fixed
array of time constants. Recent experimental data (Buono-
mano et al., 1995) support this model by showing that PPF and
slow IPSPs lead to the activation of subpopulations of neurons
in a history- and context-dependent manner. Thus, it appears
that networks of neurons are intrinsically capable of processing
temporal information.

Both the delay-line and dynamic network models can account
for the temporal perceptual learning observed here. Because both
models translate temporal information into a spatial representa-
tion, they can attribute temporal perceptual learning to an in-
creased sensitivity to differences in spatial activation. They can
also explain the lack of generalization to untrained intervals by
assuming that the learning is spatially specific. Finally, they can
account for the spatial (spectral) generalization of learning by
assuming that at some level of auditory processing inputs from
different frequencies converge on a common site and that learning
happens at or after this site.

Conclusions
The human psychophysical results reported here indicate that
(1) auditory temporal–interval discrimination improves with
practice, and (2) this learning is temporally, but not spectrally,
specific. These results are similar to those observed in visual
spatial learning in that both types of learning follow a similar
time course and show some specificity to the trained task. The
reported pattern of temporal learning and generalization is
inconsistent with energy integration and single-stage internal
clock models of temporal processing, but could be accounted
for by delay-line, dynamic network, or two-stage internal clock
models. The further refinement of current models awaits a
more detailed understanding of the psychophysics and physi-
ology of temporal processing.
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