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N E U R O S C I E N C E

Unified control of temporal and spatial scales of 
sensorimotor behavior through neuromodulation of 
short-term synaptic plasticity
Shanglin Zhou1,2,3,4* and Dean V. Buonomano5,6

Neuromodulators have been shown to alter the temporal profile of short-term synaptic plasticity (STP); however, 
the computational function of this neuromodulation remains unexplored. Here, we propose that the neuromodu-
lation of STP provides a general mechanism to scale neural dynamics and motor outputs in time and space. We 
trained recurrent neural networks that incorporated STP to produce complex motor trajectories—handwritten 
digits—with different temporal (speed) and spatial (size) scales. Neuromodulation of STP produced temporal and 
spatial scaling of the learned dynamics and enhanced temporal or spatial generalization compared to standard 
training of the synaptic weights in the absence of STP. The model also accounted for the results of two experimental 
studies involving flexible sensorimotor timing. Neuromodulation of STP provides a unified and biologically 
plausible mechanism to control the temporal and spatial scales of neural dynamics and sensorimotor behaviors.

INTRODUCTION
A universal feature of motor behavior is the ability to flexibly adjust 
the temporal and spatial scales of motor outputs. In the temporal 
domain, it is possible to produce very similar motor output patterns 
at different speeds or overall durations (1–4). For example, people 
can flexibly control the tempo of a musical piece or the duration it 
takes to sign their names by altering their writing speed. Analogously, 
in the spatial domain, we can also flexibly change the size of one’s 
handwriting depending on the writing surface area available (5, 6). 
Similarly, in the sensory timing domain, the encoding of temporal 
intervals can be flexibly modulated by a range of factors, including 
dopamine levels (7–9).

It is increasingly clear that motor control and its spatial and temporal 
flexibility are, in part, governed by the neural dynamics of recurrent 
neural networks (RNNs) (10–18), suggesting that the neural dynamics 
of RNNs themselves may undergo transformations that underlie both 
temporal and spatial scaling. However, the neural circuit mechanisms 
underlying flexible temporal and spatial transformations remain 
largely unknown. Although, some neurocomputational models have 
demonstrated that it is possible to temporally scale RNN dynamics—
that is, speed up and slow down the speed at which neural dynamics 
unfolds—by providing a “speed” input (1, 2, 11, 13, 19, 20) or adjusting 
the neural input-output gains (11, 21).

Here, we propose a unified and biologically inspired mechanism 
based on the neuromodulation of STP, to flexibly govern both the 
temporal and spatial scales of RNN dynamics and sensorimotor 
behaviors. STP refers to a universal form of use-dependent synaptic 
plasticity that operates on the subsecond timescale (22–24). Despite 
its presence at almost all synapses in the brain, the computational 
functions of STP remain poorly understood. One experimentally 
characterized feature of STP is that it can be flexibly modulated by 
neuromodulators such as dopamine (25–33) as well as γ-aminobutyric 

acid type b (GABAb) receptors (34–37). Specifically, neuromodulators 
can alter the temporal profile of STP by governing release probability: 
Enhancing initial release can more rapidly exhaust neurotransmitter 
vesicles from the readily releasable pool and favor short-term de-
pression; in contrast, decreasing release probability can decrease 
short-term depression and favor short-term facilitation.

Even though STP is universally present at cortical synapses, most 
neural network models do not incorporate STP [for some exceptions, 
see (38–41)]. In addition, to the best of our knowledge, no previous 
neural network models have examined the computational role of the 
neuromodulation of STP. Here, we demonstrate that the incorporation 
of STP, and its neuromodulation, into RNN models provides a power-
ful and flexible mechanism to temporally and spatially modulate RNN 
dynamics and thus sensorimotor control. We show that neuromodu-
lation of STP accounts for experimental results on scaling tasks (1, 9) 
and establish that while conventional RNNs can learn to temporally 
and spatially scale their dynamics, the incorporation of STP sig-
nificantly enhances the ability of networks to generalize across 
temporal and spatial scales. Our results provide a hypothesis as to 
why synapses may exhibit STP and its neuromodulation, and provide 
a computational mechanism for unified spatial and temporal con-
trol of sensorimotor behavior.

RESULTS
Firing-rate–based RNN models have successfully been used to cap-
ture neural dynamics of cortical circuits and account for how bio-
logical neural networks can perform a range of complex cognitive 
tasks (42–46). With a few exceptions (38, 47), these RNN models 
generally do not incorporate STP. Here, we incorporate STP in all the 
synapses of an RNN using the standard Tsodyks-Markram model 
composed of two variables—the depression variable x and facilita-
tion variable u. In this model, three parameters define the evolution 
of these two variables (48): U, which can be interpreted as initial release 
probability or proportion of vesicles released from the readily releas-
able pool; τx, the time constant of recovery from depression; τu, the 
time constant of facilitation (Fig. 1A). The actual synaptic strength 
is obtained by multiplying the postsynaptic recurrent weight Wrec by 
the presynaptic variables x × u and the presynaptic neuron firing rate 
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r (Eq. 1 in Materials and Methods). We further implemented neuro-
modulation of STP via a factor α that modulated U (Fig. 1A). This 
factor α represents the level of a neuromodulator such as dopamine 
at the beginning of a trial. By modulating U through α, STP can range 
from short-term depression with high U values (where depression 
variable x dominates) to short-term facilitation (where the facilita-
tion variable u dominates) with low U values in the extreme case 
(Fig. 1B).

To address whether neuromodulation of STP can be used to con-
trol temporal and spatial scales, we trained RNNs on temporal and 
spatial scaling tasks, respectively. Each RNN was trained to produce 
10 complex motor trajectories—handwritten digits 0 to 9—in response 
to 1 of 10 brief inputs. In the temporal scaling task (Fig. 1C), RNNs 
were trained to produce each digit at a fast or slow speed (correspond-
ing to a total duration of 1 or 1.5 s, respectively). The different speeds 
were cued by the values of α. Note that we can intuit this setting as a 
behavioral trial (fast/slow) cued by context cues or block design, which 
corresponds to different neuromodulatory activity or α levels. Two 
conditions were then tested: In the “congruent condition,” a higher 
value of α (0.9) corresponded to higher speed, and a lower value of 
α (0.8) to the slower speed; and an “incongruent condition,” in which 
these relationships were reversed, i.e., higher and lower α values cued 
slower and faster speeds. In both the congruent (Fig. 1D) and incon-
gruent (fig. S1A) conditions, RNNs learned the temporal scaling task 
equally well, as quantified by the speeds of trained output trajectories, 
which was 1.5 times faster at α = 0.9 than α = 0.8 in the congruent 
condition and vice versa for the incongruent condition (Fig. 1E). 
Training to criterion on the temporal scaling task was successful 

across a diverse range of hyperparameters including the mean time 
constants of depression and facilitation, the α levels, and scaling fac-
tors (fig. S2, A, C, and E).

For the spatial scaling task, RNNs were trained to generate digits 
with the same duration but with different spatial scales (1× and 
1.5×). As in the temporal scaling task, the relationship between α 
and the scaling factor could be congruent (0.8 → 1× and 0.9 → 1.5×) 
or incongruent (0.9 → 1× and 0.8 → 1.5×) (Fig. 1F). In both the 
congruent (Fig. 1G) and incongruent (fig. S1B) conditions, RNNs 
learned the spatial scaling task well, as quantified by the Euclidian 
distance traversed by the output trajectories, which was 1.5 times 
more at α = 0.9 than α = 0.8 in the congruent condition and vice 
versa for the incongruent condition (Fig. 1H). Again, the training 
for the spatial scaling task was robust across a diverse range of hyper-
parameters (fig. S2, B, D, and F).

Although RNNs can learn equally well in both the congruent and 
incongruent conditions, the number of epochs needed to reach the 
same criterion for the congruent was significantly lower than that 
for the incongruent conditions in both the temporal and spatial scal-
ing tasks (fig. S1C), suggesting that the congruent condition may of-
fer intrinsic computational advantages (see below).

To account for the natural biological variability of neuromodula-
tion, we also tested our approach by selecting α values from a Gaussian 
distribution with a mean of 0.9 or 0.8 (for short/long and large/small 
scales) (fig. S3A). Similar to the standard congruent temporal and 
spatial scaling tasks, RNNs can learn both temporal and spatial scaling 
tasks under dynamical α values as shown by the example traces and 
summary speed and distance plots (fig. S3, B and C). For simplicity, 

Fig. 1. Temporal and spatial control of motor trajectories through neuromodulation of STP. (A) Schematic of the RNN. Transient activation of either of 10 inputs trig-
gers the production of a digit. STP was implemented through the synaptic depression variable (x) and facilitation variable (u). For each trial, the constant U was scaled by 
α to signal temporal or spatial scale. X, Y are two output units corresponding to digit coordinates. (B) Example of neuromodulation of STP on excitatory postsynaptic po-
tential (EPSP). In the extreme, different αU can result in short-term depression (black) or facilitation (red) as shown by dynamics of EPSP (top), x (middle), and u (bottom). 
τu and τx are both 1 s. (C) Schematic of the temporal scaling task. For each trial, α was 0.9/0.8, corresponding to a given digit production duration of 1 s/1.5 s in the congru-
ent condition or 1.5 s/1 s in the incongruent condition. The size of the target was the same for both α levels. (D) Example output traces under α = 0.9 (top) and α = 0.8 
(bottom) for the congruent temporal scaling condition. (E) Summary of the output speed averaged across digits for the congruent (left) and incongruent (right) conditions 
for the temporal scaling task (n = 20 RNNs; P < 0.0001 two-sided Wilcoxon signed-rank test). (F) Schematic of the spatial scaling task. For each trial, α was 0.9/0.8 corre-
sponding to a spatial scale of 1.5×/1× in the congruent condition or 1×/1.5× in the incongruent condition. The duration of the target was always 1 s. (G) Example output 
traces for the congruent spatial scaling task. (H) Summary of the output distance averaged across digits for the congruent (left) and incongruent (right) conditions for the 
spatial scaling task (n = 20 RNNs; P < 0.0001 two-sided Wilcoxon signed-rank test).
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unless stated otherwise, in the subsequent simulations, we focus on 
the standard case using two constant α values for different scales.

These results demonstrate that in principle, the α levels, which 
modulate STP through the initial “release ratio” can control either 
temporal or spatial scales, under both congruent and incongruent 
conditions. These results, however, do not address the more impor-
tant question of how temporal and spatial scaling generalizes to 
novel values of α.

Congruent modulation of STP generalizes better to novel 
scales in both temporal and spatial scaling tasks
To determine whether temporal and spatial scaling generalizes to 
novel values of α, we tested RNN performance under interpolated 
(α = 0.8 to 0.9) and extrapolated (α < 0.8, α > 0.9) conditions by 
varying α values uniformly from 0.95 to 0.75 in both tasks. Optimal 
generalization would consist of output patterns that scaled time/
space linearly with α. We quantified generalization as the root mean 
square error (RMSE) between the actual outputs and the linearly 
scaled targets (see Materials and Methods). For the temporal scaling 
task, RNNs generalized much better under the congruent, compared 
to the incongruent, condition (Fig. 2, A and C). In addition, the speed 
of the output trajectory scaled much more linearly in the congruent 
condition (Fig. 2D). In the spatial scaling task, the generalization was 
also significantly better (but not as markedly so) in the congruent 

condition (Fig. 2, B, E, and F). We also confirmed the good generaliza-
tion performance in the congruent conditions with α values from 
Gaussian distributions (fig. S3, D to G).

These results establish that while RNNs can be trained to perform 
temporal or spatial scaling in both the congruent and incongruent 
conditions, the congruent neuromodulation of STP is inherently 
superior in modulating RNN dynamics, suggesting, for example, that 
in the case of the temporal scaling task, increasing release probability 
(favoring short-term depression) might be intrinsically better suited 
to accelerate, than deaccelerate, the internal dynamics of RNNs.

Temporal and spatial profiles of recurrent dynamics
To begin to understand how neuromodulation of STP drives the 
scaling of RNN dynamics across temporal and spatial scales, we first 
analyzed the dynamics of the recurrent networks under different 
values of α. We plotted the population activity normalized to the 
maximal activity across α levels for each unit and sorted units by 
latency at different α values for the congruent conditions. For the 
temporal scaling task, the sequential order of the dynamics at α = 0.8 
in the congruent condition was largely preserved with respect to the 
dynamics at α = 0.9 but shifted to the right (Fig. 3A), consistent with 
slower internal dynamics of the RNN. In temporal scaling task, the 
maximal firing rate of the units (related to the amplitude of RNN 
dynamics) appeared to be higher at α = 0.9 compared to α = 0.8 

Fig. 2. Congruent modulation of STP produces better generalization to novel temporal and spatial scales. (A) Example output traces of digit 0 under novel α levels 
for congruent (top) and incongruent (bottom) conditions in the temporal scaling task. Gray arrows denote the α levels used for training. (B) Similar to (A) but for the spatial 
scaling task under congruent (left) and incongruent (right) conditions. Color codes different α levels. (C) Summary of the generalization performance for the temporal 
scaling task as measured by RMSE between the actual output and targets linearly warped according to the corresponding α level. Note that RMSE at the novel (untrained) 
α values for the congruent (green) condition was significantly lower than that for the incongruent (orange) condition (n = 20 RNNs; P < 10−7, two-sided Wilcoxon rank sum 
test). (D) Summary of speed versus α levels for the congruent (green) and incongruent (orange) conditions in the temporal scaling task. Note that the relation for the 
congruent condition was more linear. (E) Same as (C) but for the spatial scaling task. RMSE for the congruent (blue) condition was significantly lower than that for the in-
congruent (purple) condition (n = 20 RNNs; P < 10−6, two-sided Wilcoxon rank sum test). (F) Same as (D) but for distances with the congruent (blue) and incongruent 
(purple) conditions in the spatial scaling task. Data were presented as means ± SEM (light overlay).
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(note the change in yellow intensity). These observations were con-
firmed by plotting and comparing the two congruent RNN trajectories 
(non-normalized) in principal components analysis (PCA) space 
(Fig. 3C). In the spatial scaling task, the sequential order was largely 
preserved in the congruent condition (Fig. 3B), while the size of the 
trajectories for the different α values also existed (Fig. 3D).

To quantify the changes in RNN dynamics produced by the neu-
romodulation of STP, we developed three interrelated measures: 
Temporal Scaling Factor (TSF), Spatial Scaling Factor (SSF), and a 
Scale-Specific Index (SSI), all calculated from the same algorithm 
(schematized in Fig. 3E). To compare the trajectories generated with 
α values of 0.9 and 0.8 (r0.9 versus r0.8) we searched for the best temporal 

(TSF) and spatial (SSF) warping factors that create the best match 
of r0.9 to r0.8. The Euclidean distance between r0.9 and r0.8 at the best 
temporal (TSF) and spatial (SSF) warping factors is then used to 
obtain an SSI value (see Materials and Methods). Intuitively, the 
lower the SSI, the better r0.8 can be fit by warping r0.9 temporally by 
TSF and spatially by SSF. Applying these measures to the temporal 
scaling task, we found that the TSF for the congruent condition was 
significantly higher than 1 and close to the target value of 1.5, sug-
gesting a robust temporal scaling of the RNN dynamics (Fig.  3F, 
left). The SSI was also significantly lower than 1 (Fig. 3F, right) sug-
gesting that in the congruent condition, RNN trajectories at α = 0.8 
were a linearly warped version of the α = 0.9 trajectory. Note that 

Fig. 3. Temporal and spatial scaling of recurrent dynamics. (A) Normalized recurrent population activity at α = 0.9 (top) and α = 0.8 (bottom) sorted according to the 
peak activity latency at α = 0.9 for congruent temporal scaling tasks. The red dots denote the peak activity time for each unit. The gray dashed line denotes 0.5 s. The activ-
ity of each unit is normalized to its maximal activity across α levels. (B) Same as (A) but for spatial scaling task. (C) Plot of the first three principal components (PCs) of 
population activity at α = 0.9 (black) and 0.8 (dark red) in temporal scaling task. The color bar codes for time. (D) Same as (C) but for the spatial scaling task. (E) Schematic 
of the TSF, SSF, and SSI. For two hypothetical neural trajectories r0.9 (black) and r0.8 (red), r0.9 is temporally warped by either linear interpolating or subsampling a range of 
candidate temporal scaling factors (tsf ). Each time-warped trajectory is multiplied with a candidate spatial scaling factor (ssf ), resulting in a grid of temporally spatially 
warped dynamics of r0.9 (gray). The Euclidian distance between these warped dynamics and r0.8 (light red traces on top) is computed. The tsf and ssf leading to the mini-
mal distance are defined as TSF and SSF, respectively. SSI is defined as the distance at TSF/SSF divided by the distance between r0.8 and its mean. (F) Comparison of the 
average TSF (left), SSF (middle), and SSI (right) values against 1 for the congruent conditions across 20 RNNs in the temporal scaling task (n = 10 digits; P = 0.002, two-sided 
Wilcoxon signed-rank test for TSF, SSF, and SSI). (G) Same as (F) but for the spatial scaling task (n = 10 digits; P = 0.002, two-sided Wilcoxon signed-rank test for TSF, SSF, 
and SSI).
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the SSF for the temporal scaling task is below 1 (Fig. 3F, middle), 
indicating that the faster trajectory is accompanied by higher-
amplitude firing rates of the RNN units.

Quantification of RNN trajectories in the spatial scaling task re-
vealed that the SSF and SSI for the congruent condition were both 
significantly lower than 1 (Fig. 3G, middle, right), suggesting a robust 
spatial scaling of the RNN dynamics across different α. As expected, 
because the duration of both the large and small outputs is similar, 
the TSF for the spatial scaling task was close to 1 (Fig. 3G, left).

In the incongruent conditions, the temporal and spatial scaling 
profiles in both the temporal and spatial scaling tasks are significantly 
weaker as quantified by the same TSF, SSF, and SSI measures compared 
to that in the congruent condition (fig. S4). To further corroborate 
the above measures we performed time and unit shuffled controls 
(fig. S5). As expected, shuffling resulted in significantly higher SSI 
values and disrupted the temporal and spatial profiles as quantified 
by the TSF and SSF. We performed the same analyses based on the 
temporal profile of the synaptic efficacy as defined by the product of 
x and u of STP. This revealed similar temporal and spatial scaling 
profiles as the dynamics of activity (fig. S6).

These results demonstrate that in the temporal scaling task, the 
congruent neuromodulation of STP produced temporal scaling of 
output trajectories, by the temporally scaling of RNN trajectories. 
That is, while an increase in neuromodulator concentration could 
potentially increase or decrease release probability, these results 
show that congruent modulation—where higher synaptic release 
probabilities (favoring depression) correspond to faster speeds—is 
intrinsically better at temporally scaling RNN dynamics. Similarly, but 
to a lesser degree, in the spatial scaling task congruent modulation—
where higher synaptic release probabilities correspond to larger sizes—
is better suited to produce a uniform modulation of firing rate amplitude 
and thus spatial scaling of the output.

To dissect the mechanisms underlying the differential scaling of 
RNN trajectories during congruent and incongruent neuromodula-
tion of STP, we focused on the RNN state s (Eq. 1 in Materials and 
Methods) trajectories at α = 0.9 and α = 0.8 (s0.9 and s0.8, respectively, 
in fig. S7A). At any given time point in s0.9 and s0.8, there are corre-
sponding velocity vectors v0.9 and v0.8, that can be decomposed into 
a decay component (d0.9 and d0.8) and a recurrent component (rec0.9 
and rec0.8). In addition, there is a vector, p, denoting the direction 
from s0.8 to s0.9 (normalized time). We defined the angle between 
rec0.8 and p as θ and the angle between rec0.8 and v0.9 as μ. Intuitively, 
increasing α from 0.8 to 0.9 should increase the recurrent drive. For 
s0.9 to speed up compared to s0.8, we should expect μ to be smaller 
than 90°. If s0.9 is larger than s0.8, we should expect the angle θ to be 
small to increase drive in the p direction.

In the temporal scaling task, the mean μ across time in the con-
gruent condition was less than 90°, in contrast to the incongruent 
condition in which it was larger than 90° (fig. S7B, left), indicating a 
faster and slower s0.9 trajectory in the congruent and incongruent con-
ditions, respectively. θ in the congruent condition was significantly 
lower than in the incongruent condition (fig. S7B, right), indicating 
that the difference in the size (amplitude) between the s0.8 and s0.9 
trajectories was larger in the congruent condition (consistent with 
SSF in the congruent condition being significantly lower as in Fig. 3F, 
middle).

For the spatial scaling task, θ is significantly lower in the congruent 
compared to the incongruent condition (fig. S7C, right), implying 
that the difference in size between the s0.8 and s0.9 trajectories was 

larger in the congruent condition (consistent with SSF in the con-
gruent condition being significantly lower as in Fig. 3G, middle). In 
both the congruent and incongruent conditions, μ was close to 90° 
(fig. S7C, left), suggesting that the changes in speed from s0.8 and s0.9 
trajectories were not as marked as in the temporal scaling task.

As shown in Fig. 3, for both tasks the SSF values of the recurrent 
dynamics in both the congruent and incongruent conditions are less 
than 1, which indicates that the size of the recurrent dynamics at 
α = 0.9 is larger than α = 0.8. In the spatial scaling task, the larger 
recurrent dynamics at α = 0.9 in the congruent condition would be 
appropriate for generating larger output as the task requires. How-
ever, in the incongruent condition, the larger trajectory paradoxi-
cally generates a smaller output (as required by training). The 
solution to this paradox can be understood by using a light projec-
tion analogy (fig. S7D). In light projection, to get a smaller shadow 
from a larger trajectory, one can arrange the larger trajectory to have 
a larger angle with the ground, the plane on which the shadow is 
located. Analogously in our model, the output trajectory is the pro-
jection of the recurrent dynamics onto the output space governed by 
the output weights. Thus, in the incongruent spatial scaling task, we 
would expect the angle between larger recurrent dynamics [sub-
space of the first two principal components (PCs)] and output space 
to be larger than that between smaller recurrent dynamics and out-
put space. In the incongruent spatial scaling task, the angle between 
recurrent space at α = 0.9 (which has larger dynamics) and the output 
space was slightly but significantly higher than at α = 0.8 (fig. S7F, 
right). As expected, there was no such angle difference in the con-
gruent spatial scaling (fig. S7F, left).

Relatedly, in the temporal scaling task, the α-induced change in 
trajectory amplitude was larger in the congruent condition (Fig. 3F, 
middle). Specifically, SSF in the congruent condition was smaller 
(reflecting a smaller trajectory at α = 0.8), even though it generated 
an output of the same size. Again, this paradox is resolved by the 
smaller projection angle φ when α = 0.8 (fig. S7E, left). Last, these 
findings are robust when quantifying the angles for higher dimen-
sional recurrent space expanded by more PCs (fig. S8).

α-cued scaling outperforms input amplitude–cued scaling 
for generalization performance in temporal scaling task
In addition to the current approach of using neuromodulation of STP 
to govern different temporal and spatial scales, a series of previous 
studies have used the amplitude of external input in different scales 
(1, 2, 13, 19, 20)—e.g., by incorporating a separate speed or “size” 
input to cue different speeds or sizes. To directly compare the general-
ization performance between these two distinct approaches, we trained 
the same RNNs without STP to perform the same temporal and spatial 
scaling but used the amplitude of additional input to cue different 
scales in the congruent condition: i.e., higher input amplitude cor-
responds to faster speed or larger size (Fig. 4A). We trained RNNs 
under a series of amplitude pairs ranging from 0.9/0.85 to 0.9/0.1 to 
match the values used by most of the previous studies (Fig. 4, B and 
C). We then performed the same generalization analysis as above 
and found that amplitude pair 0.9/0.7 reached the best generaliza-
tion performance in both temporal and spatial scaling tasks for the 
input amplitude–cued approach (Fig. 4, D and E). The generaliza-
tion performance for the STP-based scaling approach is significantly 
better than the input amplitude–cued approach under all the tested 
amplitude pairs in the temporal scaling task (Fig. 4D) but compa-
rable or slightly worse in the spatial scaling task (Fig. 4E). To further 
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understand why input amplitude–cued scaling task is worse in tem-
poral generalization and the underlying temporal-spatial profile of 
neural dynamics across different scales, we performed the same TSF, 
SSF, and SSI analysis as above. The TSF for RNNs with input amplitude–
cued temporal scale is above 1 (Fig. 4F, left), and SSI is below 1 (Fig. 4F, 
right), implying that recurrent dynamics for different scales are temporally 

scaled to some extent, which is consistent with previous studies (1, 2, 
13, 19, 20). However, input amplitude–cued scaling led to lower TSF 
and higher SSI compared to those for α-cued scaling, which implies 
that the α-cued scaling approach gives rise to better temporal scal-
ing for dynamics across different scales and thus leads to a better 
generalization performance. This reasoning can be applied to explain 

Fig. 4. RNNs trained with temporal and spatial scales cued by input amplitude. (A) Schematic of RNNs trained with input amplitude scaling (Is), where an external input 
that cues scale is continuously presented during the whole trial. (B) Similar to the congruent settings for the standard α-cued scaling task, a series of pairs of high/low inputs 
correspond to the short/long duration. (C) Similar to (B) but for the spatial scaling task. (D) Left: The generalization performance (RMSE) across linearly spaced novel levels for 
the two approaches on the temporal scaling task: input amplitude–cued (graded magenta) and α-cued (green). Right: Comparison of averaged RMSE across all generalization 
levels for α (0.9/0.8) and Is (0.9/0.7) (n = 20 RNNs; P < 10−7, Wilcoxon rank sum test). (E) Same as (D) but for the spatial scaling task (n = 20 RNNs; P < 10−7, Wilcoxon rank sum 
test). (F) Comparison of the average TSF (left), SSF (middle), and SSI (right) values for α(0.9/0.8) and Is(0.9/0.7) across 20 RNNs in the input amplitude–cued temporal scaling task 
(n = 10 digits; P = 0.002, two-sided Wilcoxon signed-rank test for TSF, SSF, and SSI). (G) Same as (F) but for the input amplitude–cued spatial scaling task (n = 10 digits; P = 0.002, 
0.004, and 0.002, two-sided Wilcoxon signed-rank test for TSF, SSF, and SSI, respectively). (H) Schematic of training RNNs with only one-scale level 0.8 in both α-cued and input 
amplitude–cued scaling task. (I) Example output traces of digit 0 on scale level of 0.7, 0.8, and 0.9 in both α-cued and input amplitude–cued scaling tasks. (J) The averaged 
output distance during 1 s for RNNs trained with single-scale level 0.8 and tested with α = 0.9/0.7 (left), Is = 0.9/0.7 (middle), and Is = 1.1/0.5 for a wider range (right).
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the difference in the spatial scaling tasks, in which the difference 
between SSF and SSI is slight (Fig.  4G), which might lead to the 
minor difference in the generalization performance.

To further test the intrinsic generalization performance for both 
approaches, we trained RNNs with a single-scale level (either single α 
or single input amplitude) and tested with novel-scale levels (Fig. 4H). 
We found that RNNs trained with the α-cued scaling approach tended 
to generalize better to novel-scale levels as shown by more temporally 
and spatially scaled output example traces (Fig. 4I) and more distance 
traversed in 1 s (equal to the average speed) (Fig. 4J).

Note that for all the comparisons between the STP-controlled 
(α-cued) and input amplitude–controlled scaling approach, we imple-
mented the same RNNs with the same number of units and synapses. 
Thus, generally, the α-cued approach would have extra dynamical 
variables as in the STP model, and it requires more time to train. 
However, because the STP parameters were not trained, the numbers 
of trained variables in both approaches were the same, which makes 
the comparison fair to some extent.

In sum, compared to previous approaches—such as using input 
amplitude to signal the scales, neuromodulation of STP (α-cued 
scaling approach) is better at generalization to novel scales in tem-
poral scaling tasks but less so in spatial scaling tasks when trained 
with two-scale levels. Furthermore, when trained with only one scale, 
the α-cued scaling approach intrinsically generalizes better in both 
temporal and spatial scaling.

Short-term plasticity enhances generalization and speeds 
up training
The above results demonstrate that we can modulate the temporal 
or spatial scale by changing the initial synaptic release probability 
controlled by α. Although α controlled release probability U, it did 
not directly address whether STP is actually contributing to the 
results. That is, does simply adjusting the synaptic release probability 
in the absence of STP (i.e., simply scaling all synaptic weights) result 
in similar performance? To address that question, we ran control 
simulations for RNNs without STP but still included an α term. Specifi-
cally, we fixed x at 1 and u at αU during the whole trial. These modifi-
cations removed the synaptic dynamics but allowed α to scale the 
strength of the nondynamical synapses in the RNN. We then trained 
and tested the RNNs without STP using the same task in the congruent 
condition as in the standard model. The generalization performance 
for the RNNs without STP markedly decreased for both the temporal 
(Fig. 5, A and C) and spatial scaling tasks (Fig. 5, B and C). Further-
more, the absence of STP markedly slowed training as shown by 
the increase in training epochs needed to reach the same criterion 
(Fig. 5D). These results suggest that STP does indeed provide a unified 
mechanism to effectively scale temporal and spatial neural dynamics.

Joint control of temporal and spatial scales and shape via 
neuromodulation of STP
Up to now, we have demonstrated that adjusting α can control either 
temporal or spatial scales separately. We next ask whether α can 
jointly control temporal and spatial scales in a single RNN (here, the 
relationship between α and the temporal and spatial scales was always 
congruent). To explore this possibility, we arbitrarily divided the re-
current units into two groups. One group received a neuromodulatory 
signal that controls temporal scale, and another group receives a 
signal that controls spatial scale (Fig. 6A). RNNs learn the task well 
(Fig. 6B), and in this joint control task, RNNs generalize to all the 

combinations of novel α levels for the temporal and spatial 
scales (Fig. 6C, left). Note that speed (defined by the mean distance 
traversed per second) progressively increases toward the top 
left part of the speed plot, which corresponds to the fastest speed 
required to generate the largest output (spatial α = 0.95 for large size) 
in the shortest time (temporal α = 0.9 for 1 s). Similarly, the distance 
progressively increases toward the bottom left (Fig. 6C, right), which 
corresponds to the longest distance required to generate the largest 
output in the longest time.

We next asked whether α can jointly control an additional task 
dimension: the output shape, i.e., rather than cueing digit identity by 
distinct inputs as in the above implementations, the digit identity 
was cued by changing α in a subset of units. To achieve this, we 
divided the recurrent units into three groups (50, 25, and 25%): 50% 
for digit shape, 25% for temporal scale, and 25% for spatial scale 
(Fig. 6D). The digit group was further subdivided into 10 subgroups 
corresponding to each of 10 digits, and the α value of each set corre-
sponding to 0.6 or 1 (Fig. 6D). With this architecture, RNNs learned 
to generate all digits at all trained durations and spatial scales. Again, 
the RNNs generalized well to novel joint values α used to control 
temporal and spatial scales (Fig. 6, E and F).

Cueing digit identity by using either different inputs or α values 
resulted in similar learning and generalization performance. PCA 
plots of RNN dynamics revealed that using α to signal digit identity 
led to recurrent dynamics that was more similar across digits (fig. S9A). 
These observations are further confirmed by the cross-digit correlations 
for the two digit encoding strategies (fig. S9, B and C)—reflecting lower 
dimensional RNN dynamics across all digits when digit identity is 
cued by α. These findings suggest that similar output can be generated 
from different recurrent dynamical regimes.

Neuromodulation of STP captures the temporal scaling 
observed in two sensorimotor tasks
Above, we mainly focused on how α can control the temporal and spa-
tial scales in a motor task—generating handwritten digits. To investi-
gate whether modulating α can account for experimental findings on 
temporal scaling, we next simulated two experimental studies: one 
from rodents (9) and another from nonhuman primates (1). First, we 
trained RNNs to solve an interval-alternative-forced-choice (IAFC) 
task where rats needed to classify intervals as short or long (9). In 
this study, optogenetically increasing dopamine levels selectively 
shifted the decision toward the short intervals (i.e., the psychometric 
curve was shifted right). To simulate this experiment, we first trained 
RNNs to discriminate the same intervals used in the experimental 
task using a single α value of 0.8 for all units (Fig. 7A). At this trained 
condition, the RNNs replicated the behavioral results as shown by 
the output traces and psychometric function (Fig. 7, B and C). We 
then sought to simulate the dopamine manipulation experiments. 
Multiple studies have demonstrated that dopamine decreases the 
synaptic release probability in both excitatory and inhibitory cortical 
synapses (29–33). We thus simulated low or high dopamine levels in 
the IAFC task by changing α to 0.9 or 0.7, respectively. Decreasing α 
from 0.8 to 0.7 shifts the psychometric curve to the right, as in the 
dopamine manipulation experiments, and vice versa when α was in-
creased to 0.9 (Fig. 7, D and E). It is important to note that, here, the 
RNNs were only trained with α = 0.8; thus, the left and rightward 
shifts in the psychometric function with α values of 0.9 and 0.7, respec-
tively, occur naturally—i.e., they reflect intrinsic properties of RNN 
dynamics. This intrinsic relationship between increasing RNN 
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trajectory speed and higher values of α also accounts for the superior 
performance of the RNNs above in the congruent conditions.

We next simulated an experimental task that used the Ready-
Set-Go task in monkeys (1). Here, subjects were presented with 
temporal intervals demarcated by ready and set cues, and they had 
to produce a set-go interval that reproduced the ready-set interval. 
In this study, there was an additional scaling cue, which determined 
whether subjects were required to produce the exact ready-set interval 
(1×) or scale the interval by 1.5×. To simulate this flexible sensorimo-
tor timing task, we trained RNNs to do the task using α = 0.9/0.8 to 
cue the 1×/1.5× context, respectively (Fig. 7, F and G). RNNs learned 
this task well and captured some important features of the behavior, 
such as the regression to the mean effect—i.e., a bias of the produced 
intervals toward the mean interval (Fig. 7, G and H). Similar to the 
digit production task (Fig. 2), RNNs generalized well to novel α levels 
(ranging from 0.75 to 0.95), resulting in scaling values of just below 
1× to just above 1.5× (Fig. 7I).

DISCUSSION
Here, we have proposed, and provided support, for the hypothesis 
that neuromodulation of STP provides a mechanism for RNNs to 
scale their dynamics in both time and space. RNNs that incorporated 
STP and used neuromodulation of STP to signal changes in temporal 
and/or spatial scale exhibited better generalization and performance 

than RNN models in which temporal and spatial scales were signaled 
by changes in absolute synaptic weights alone (Fig. 5) or distinct 
inputs (Fig. 4, comparable for spatial scale). Furthermore, neuro-
modulation of STP allowed RNNs to capture the results of two experi-
mental studies based on distinct sensorimotor timing tasks. While 
neuromodulation of STP is a well-established experimental phe-
nomenon in cortical and subcortical circuits alike (25, 27, 28, 35, 49–52), 
its potential role in neurocomputation has not been addressed. Here, 
we demonstrate that it provides a unified mechanism for the flexible 
regulation of neural dynamics and thus of the control of temporal 
and spatial scales for diverse sensorimotor tasks.

Temporal scaling of sensorimotor behavior through 
neuromodulation of STP
Neuromodulators such as dopamine have been implicated in a large 
range of cognitive functions including reinforcement learning (53) 
and timing. In the case of timing, it has been proposed that dopamine 
may alter “clock speed” (7, 9, 54). How dopamine could alter the speed 
of timers at the neural level, however, has not been addressed. Here, 
we propose that dopamine’s ability to modulate STP provides a mecha-
nism to link findings at the neural and cognitive levels. Specifically, 
in cortical circuits, synaptic transmission studies indicate that dopa-
mine can decrease excitatory postsynaptic potential amplitude by 
decreasing synaptic release probability (25, 28, 29, 35). By incorpo-
rating STP into RNNs and emulating dopaminergic inhibition of 

Fig. 5. STP enhances generalization and speeds up learning. (A) Example output traces of digit 0 under different α levels for the congruent temporal scaling task with 
STP (top) and congruent condition without STP (bottom)—in which case scale was cued by scaling all weights in the absence of STP. Gray arrows denote the α level used 
for training. (B) Same as (A) but for the spatial scaling task. Color codes for different α levels. (C) Summary of the generalization performance as measured by the average 
RMSE between output and the linearly scaled targets. Note that in both the temporal (left) and spatial (right) scaling tasks, the RMSE for the novel α levels for RNNs with 
STP (green or blue) was significantly lower than for RNNs without STP (gray) (n = 20 RNNs; P < 10−7, two-sided Wilcoxon rank sum test for the temporal and spatial scaling 
tasks). (D) Comparison of the number of training epochs to reach criteria for RNNs with STP and without STP in temporal scaling task (left) and spatial scaling tasks (right) 
(n = 20 RNNs; P < 10−7, two-sided Wilcoxon rank sum test for both tasks).
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release probability through decreases in the variable α, we were 
able to link cellular-level observations with previous systems and 
behavioral-level results (9).

The finding that neuromodulation of STP may serve as a neural 
mechanism for temporal scaling is consistent with the fact that dopa-
mine has been linked to timing for decades (54–58). However, there 
is a long-standing debate as to the direction of this relationship, which 
has remained a point of controversy (59). Specifically, early reports 
suggested that neuropharmacologically enhancing dopamine levels 
accelerated the neural clock (7, 60) or that there was no consistent 
effect (8). In contrast, more recent optogenetic studies suggested that 
dopamine slowed the neural clock (9). Assuming that dopamine 
acts, in part, by decreasing release probability—as in the canonical 
case of dopaminergic neuromodulation (25, 35)—our results strongly 
predict that increasing dopamine (decreasing release probability) 
should slow the internal clock. Specifically, as shown in Fig. 2, the 
congruent relationship where high values of α (low dopamine) in-
crease speed results in better performance compared to the incon-
gruent condition where decreasing α increases speed. Furthermore, 
when RNNs are trained on an interval discrimination task at only 

one α level, subsequently decreasing α (high dopamine) reveals an 
intrinsic slowing of RNN dynamics (Fig. 7, A to E).

We emphasize, however, that dopaminergic modulation of synaptic 
transmission is complex and dependent on brain areas and synapse classes 
(28, 29, 35, 49). Dopamine can affect synaptic plasticity, and intrinsic ex-
citability, in addition to synaptic strength and STP (49, 61). Similarly, at 
the behavioral and cognitive levels, the effects of dopamine are also 
highly complex. In the motor domain, for example, dopamine has been 
demonstrated to increase movement amplitude through modulation of 
the striatal activity (62), potentially, reflecting differences in dopaminergic 
neuromodulation in different brain areas. Thus, future directions should 
explore how the additional modes of action of dopamine would shape 
the temporal and spatial scales of neural dynamics.

Temporal versus spatial scaling
Previous studies have shown that RNNs can account for temporal 
scaling by cueing speed through the amplitude of a tonic speed input 
(1, 2, 13, 19, 20, 63) or by altering the gain through changes in intrinsic 
excitability (11, 21). As in the current study, in these previous 
computational models, as well as in experimental studies (1, 19, 64, 

Fig. 6. Joint control of temporal and spatial scales in RNNs through differential modulation of α in distinct subpopulations. (A) Schematic of the joint control of 
temporal and spatial scales. The α level of 50% of RNN units controlled temporal scaling, and the other half spatial scaling. (B) Example output traces for digit 0 in four 
cases: short-large, short-small, long-large, and long-small. (C) Summary of average speed (left) and distance (right) across different α levels. (D) Schematic of the encoding 
temporal and spatial scales, as well as digit identity through α. Fifty percent (of N = 400) units to signaled digit identity, while half of the remaining cued duration and 
spatial scale. (E) Same as (B) but for the model in (D). (F) Same as (C) but for the model in (D).
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65), temporal scaling was achieved by creating parallel neural trajec-
tories that flowed at different speeds (Fig. 3). Thus, there appear to 
be multiple mechanisms to flexibly control the temporal scale of 
outputs while largely preserving the geometry of the RNN dynamics.

We also directly compared previous approaches with neuromodu-
lation of STP by implementing the input amplitude–cued mechanism 

in RNNs but in the absence of STP (Fig. 4) as well as directly modu-
lating synaptic strength in the absence of STP. Neuromodulation 
of STP led to significantly better generalization in both the temporal 
and spatial scaling tasks, compared to weight modulation alone—i.e., 
modulating the weights of synapses that did not exhibit STP (Fig. 5). 
Neuromodulation of STP also led to markedly better generalization in 

Fig. 7. Simulations of two sensorimotor timing tasks. (A) Schematic of RNN used to simulate an interval discrimination task. RNNs were composed of one input for 
delivering two events demarcating a range of intervals between 0.6 and 2.4 s and two outputs corresponding to a short or long decision (short <1.5 s; long >1.5 s). RNNs 
were trained only with α = 0.8. (B) Output traces of an example RNN. (C) Sigmoidal fits of the long choice probability tested at α = 0.8. (D) Similar to (C) but at α = 0.9 
(black), α = 0.7 (purple), and α = 0.8 (red) for comparison. (E) Summary of the time “point-of-subjective equality” (T1/2) for the sigmoid fits in (D). Changing α significantly 
changed the T1/2 [n = 20 RNNs, Kruskal-Wallis test, P < 10−10, χ2

(2,57) = 48.0], and T1/2 for α = 0.9 and 0.7 was significantly lower and higher than for α = 0.8, respectively 
(P = 0.0007 and P = 0.003, Dunn’s multiple comparison test). (F) Schematic of RNN used to simulate a Ready-Set-Go task. RNNs were composed of one input that delivered 
two events (demarcating the Ready-Set interval) and one output. On the basis of the context, cued by α = 0.9 or 0.8, the output unit should generate an interval of 1× or 1.5× 
the Ready-Set interval. (G) Plot of the input (top), target (middle), and output traces for α = 0.9 (left) and 0.8 (right) for an example RNN. The dashed line denoted the cross-
ing time threshold. (H) Plot of the production time (mean ± SD) versus the sensory time for α = 0.9 (black) or α = 0.8 (red) in an example. (I) Summary of the average 
production time (mean ± SEM) for novel α levels with trained α shown thicker lines, across RNNs (n = 20).
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the temporal scaling task compared to when scaling was cued by the 
value of a speed input (Fig. 4D). In the case of the spatial scaling task, 
there was not a marked difference between generalization through 
neuromodulation of STP neuromodulation and input amplitude 
approaches (Fig. 4E)—and the latter led to slightly better general-
ization. However, after training with a single α or input level, chang-
ing α led to more robust spatial scaling than changing the input 
level (Fig. 4, I and J). Furthermore, STP might intrinsically speed up 
the training (Fig. 5) by potentially stabilizing the dynamics (66).

These results suggest that while neuromodulation of STP can un-
derlie both temporal and spatial scaling, neuromodulation of STP is 
particularly well suited to control temporal dynamics (Figs. 2 and 5). 
We note that this is consistent with the experimental observation 
that dopamine—a well-known modulator of STP—has been strong-
ly associated with temporal scaling rather than spatial scaling.

Conclusions and predictions
Even though STP is universally present at cortical synapses, the po-
tential computational function of STP and its neuromodulation has 
remained largely unaddressed. Here, we propose that neural modu-
lation of STP provides a unified biological mechanism for control-
ling temporal scaling, and to a lesser degree spatial scaling, of neural 
dynamics and sensorimotor behaviors. We found that when STP is 
incorporated into the synapses of RNNs, the neural dynamics of 
these RNNs are naturally accelerated by increasing α (i.e., shifting 
STP toward short-term depression by increasing a variable related 
to release probability). Because increasing release probability is 
equivalent to increasing synaptic weights when a synapse is first ac-
tivated, we performed control experiments in which temporal scal-
ing was associated with changes in absolute synaptic strength in the 
absence of STP. The superior generalization and marked decrease in 
training time in the presence of STP indicate that there is an intrin-
sic interaction between the short-term dynamics of individual syn-
apses and the global neural dynamics of RNNs. Multiple factors are 
likely to contribute to this interaction, including that short-term 
depression helps counteract the positive feedback within RNNs and 
that shifting the effective strength of dynamic synapses to the onset 
of neural activity (high α) naturally accelerates the speed at which 
activity flows through RNNs. The nature of this interaction provides 
a link between the synaptic actions of dopamine on STP and long-
standing data linking dopamine to alterations in timing and time 
perception. In addition, we provide a theoretical support for the long-
standing debate as to whether dopamine increases or decreases neu-
ral clock speed; specifically, we predict that an increase in dopamine 
should slow down the neural trajectories of cortical circuits.

Overall, our results demonstrate that the incorporation of STP and 
its neuromodulation into RNN models provides a powerful and flexible 
mechanism to implement temporal and spatial scaling of the dynamics 
of RNNs. These results thus provide a hypothesis as to why synapses 
may exhibit STP, and provide a computational mechanism for the neural 
dynamics, and thus temporal and spatial control of sensorimotor tasks.

MATERIALS AND METHODS
RNN model
Network architecture and STP
RNNs were based on firing-rate units that obeyed Dale’s law (N = 200 
unless otherwise specified, 80/20% excitatory/inhibitory). RNN 
dynamics was described by the following equations

where s ∈ ℝN×1 represents the state of the RNN units, and the firing 
rate vector r corresponds to the rectified linear activation function 
on s. The time constant τ was 100 ms for all units. Win ∈ ℝN×Ni is the 
input weight matrix, and Ni represents the number of inputs. I rep-
resents the external inputs. Each unit received independent Gaussian 
noise N(0,1) with an SD of σ

√

2τ . Unless otherwise specified, σ = 0.01. 
Wrec ∈ ℝN×N is the recurrent weight matrix. Self-connections were ab-
sent in the network. Asterisks represent matrix multiplication and 
dots elementwise multiplication.

STP was incorporated as in previous firing-rate models (38, 41). 
Specifically, cell-specific STP was implemented in the recurrent units 
as described in Eqs. 2 and 3: The depression variable x and facilitat-
ing variable u were shared for all synapses from the same presynaptic 
neuron. The vector U corresponds to the initial synaptic release 
probability or baseline percentage of available transmitter released. 
To implement neuromodulation of STP, we scaled U with a factor α 
in the range of 0 to 1.

The output (o) of the network was computed linearly from the 
output weights Wout and r with a bias term bout. RNNs were imple-
mented and trained in Tensorflow 2.3 based on the code from a pre-
vious study (67).
Training
Networks were trained using the adaptive moment estimation sto-
chastic gradient descent algorithm (Adam) implemented in Tensor-
flow2 to minimize the RMSE between network output o and target z

where T is the total length of a given trial. The target is task dependent 
as described below. The learning rate was 0.001, and other TensorFlow 
default values were used. A discretization step of 10 ms was used for 
the simulations.

Wrec was initialized as a random matrix with full connectivity 
from a Gamma distribution with a shape parameter of 0.1 and a 
scale parameter of 1.0, multiplied by a gain factor of 0.5. To start 
from an approximately balanced regime, the inhibitory weights 
were multiplied by 4. To respect Dale’s law during training, a recti-
fied linear operation was applied on Wrec to clip the weights at zero, 
and then excitation and inhibition were implemented by multiply-
ing the clipped Wrec with a diagonal matrix of 1 and −1 representing 
excitatory and inhibitory units, respectively. Initial Win was drawn 

τ
ds

dt
= − s +W

rec∗(r ⋅ x ⋅ u) +W
in∗

I + σN(0, 1)
√

2τ (1)

dx

dt
=

1 − x

τx
− u ⋅ x ⋅ r (2)

du

dt
=

α ⋅U − u

τu
+ α ⋅U ⋅ (1 − u) ⋅ r (3)

o =W
out∗

r + b
out (4)

r = relu(s) (5)

RMSE =

√

√

√

√
1

T

T
∑

t=0

[o(t)−z(t)]2 (6)
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from the same Gamma distribution clipped to zero during training 
the same way as Wrec. Wout and bout were initialized at zero.

U was drawn from a Gaussian distribution with a mean of 0.5 and 
SD of 0.17 (mean/3) and cut off at 0.001 and 0.99. Unless otherwise 
specified, τx and τu were drawn from a Gaussian distribution with a 
mean of 1 s and SD of 0.33 s (mean/3) and cutoff at 0.1 s and 3 s to 
ensure numerical stability. α was task specific as described below.

Win, Wrec, Wout, and bout were trained. Parameters were updated 
after each batch of 16 trials. After every 100 batches of training, the 
network was tested for 20 batches to compute the task performance 
and mean error. For all the spatial and temporal scaling motor tra-
jectory tasks, the training was considered a success and stopped 
when the mean error was lower than 0.02; for the IAFC and flexible 
sensorimotor timing tasks, the stop criterion was task performance 
above 90 or 98%, respectively, to capture the experimental features.

Temporal and spatial scaling motor trajectory tasks
We trained RNNs to generate a series of complex motor trajectories: 
10 handwritten digits from 0 to 9 (68). Unless otherwise specified, 
each of the 10 input signals was presented for 0.1 s with onset time 
randomly drawn from a uniform distribution (0.2 to 0.6 s) to cue 
digit identity. Following the input, the network evolved freely for a 
specific duration to match the corresponding targets warped tempo-
rally and/or spatially according to the task requirements.
Temporal scaling task
During training, for the congruent condition, α = 0.9 corresponded 
to the standard target with a duration of 1 s, while α = 0.8 trials corre-
sponded to the target with a duration of 1.5 s uniformly interpolated 
from the standard target. For the incongruent condition, the asso-
ciation between the α and target duration switched, namely, 0.9 and 
0.8 corresponded to 1.5 and 1 s, respectively.
Spatial scaling task
During training, for the congruent condition, α = 0.8 corresponded 
to the standard size target with a duration of 1 s, and α = 0.9 cor-
responded to the larger target also with a duration of 1 s but with the 
amplitude of the output target multiplied by a factor of 1.5, namely, 
the size of target was 1.5× larger than the standard one. For the incon-
gruent condition, the association between the α and target size 
was reversed.

In simulations in fig. S3, α values in each trial were randomly se-
lected from Gaussian distributions with SD = 0.0075 and means = 
0.9/0.8 for short/long or large/small scales, respectively, in temporal 
and spatial congruent scaling tasks.
Joint temporal-spatial scaling task
For the joint control of temporal and spatial scales in the same network 
(Fig. 6), we increased N to 400. Fifty percent of recurrent units were used 
for temporal scaling and the other 50% for spatial scaling (Fig. 6A).

To examine joint control of shape (digit identity) and temporal and 
spatial scales in a single network, we randomly divided the 400 recur-
rent units into three groups: shape (1 to 200), temporal scale (201 to 
300), and spatial scale (301 to 400). The temporal and spatial scales 
were cued the same way as the joint task, but we further divided the 
shape group into 10 subgroups corresponding to the 10 digits. To cue 
a given digit, we set the α in the corresponding subgroup to 0.6 while 
leaving the α in the rest of the shape group at 1 (Fig. 6D).

Generalization performance
To see whether RNNs trained with two α levels can generalize to 
other temporal or spatial scales, we tested the RNNs with α level in 

between (interpolation) and outside (extrapolation) of the trained levels. 
Specifically, for trained α levels of 0.8 and 0.9, we tested α = 0.75, 0.775 
0.825, 0.85, 0.875, 0.925, and 0.95. The generalization performance was 
quantified as the RMSE between the output under the testing α and the 
target zα(t) linearly warped to the trained α levels. For instance, the length 
of zα(t), Tα, for the congruent temporal scaling task with the trained 
α1 and α2 values corresponding to the digit lengths T1 and T2 (1, 
1.5 s) would be

Therefore

Similarly, the size of zα(t), Sα for the congruent spatial scaling task 
with the trained α1/α2 corresponding to the digit size S1/S2 (1.5/1) 
would be

Therefore

The incongruent conditions were modified accordingly.

Temporal Scaling Factor, Spatial Scaling Factor, and 
Scale-Specific Index
To quantify temporal and spatial scaling of the recurrent dynamics, 
we extended a previously described method (63, 64) to define three 
measures: TSF, SSF, and SSI. As in Fig. 3E, for two given population 
trajectories: r0.9 (N × T1) and r0.8 (N × T2) with T1 < T2, the goal of 
the algorithm is to find the best temporal and spatial scaling factors, 
by which warping r0.9 gives the best match to r0.8. Specifically, we 
searched among a range of temporal scaling factors (tsf, 0.5 to 2), 
and spatial scaling factors (ssf, 0.5 to 2). We then warped r0.9 tempo-
rally and spatially as follows

where the mean() function is applied to each unit.
To compare with r0.9

warp(t), we extended the r0.8 dynamics 
as follows

We then obtained the maximal length, Tmax between T2 and T1*tsf

We next compute the mean Euclidean distance d(ssf,tsf) between 
r0.9

warp(t) and r0.8′(t) for each pair of ssf and tsf as

Tα = T1 +
T2 − T1

α2 − α1
(α − α1)

zα(t) = zα1

(

t∗
T1

Tα

)

Sα = S2 +
S1 − S2
α1 − α2

(α − α2)

zα(t) = zα2(t) ∗
Sα
S2

r
warp

0.9
(t) =

⎧

⎪

⎨

⎪

⎩
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�

t
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�
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1
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||·|| denotes Euclidean norm of a given vector. Then the SSF and TSF 
were defined as the tsf and ssf that gives the minimal d(ssf,tsf)

Last, we defined the SSI as

Intuitively, SSI provides a measure of how well the relation from 
r0.9 to r0.8 can be explained by temporal and spatial scaling profiles, 
namely, the smaller the SSI, the better r0.8 can be fitted by warping 
r0.9 temporally and spatially—e.g., SSI = 0 indicates that warping of 
r0.9 perfectly fits r0.8, and SSI > 1 indicates that the fit is worse than 
simply using the mean of r0.8.

Trajectory decomposition analysis
To understand the transitions between trajectories at different α levels, 
we started from the state trajectories (Eq. 1) at α = 0.9 (s0.9) and 
α = 0.8 (s0.8) (fig. S7A). For the spatial scaling task, s0.9 and s0.8 
naturally have the same duration, while for the temporal scaling 
task, we uniformly subsampled the trajectory with the longer dura-
tion to the same as the short trajectory. For a given time point on s0.8 
and its corresponding time point on s0.9 with direction p from s0.8 to 
s0.9, there are velocity vectors v0.8 and v0.9, respectively. In general, 
v0.8 can be decomposed into the recurrent component, rec0.8, and 
decay component d0.8. We then sought to compute the angle be-
tween rec0.8 and p or the angle between rec0.8 and v0.9 at each cor-
responding time point on s0.9 and s0.8. Last, mean angle across time 
was obtained for comparison.

Subspace angle analysis
In fig. S7 (D to F), we computed the angle between the subspace of 
the recurrent dynamics at different α levels with the subspace of the 
output. Specifically, for a given trajectory r, we performed the PCA, 
then the recurrent space was expanded by the first n PCs. The output 
space was expanded by the learned output weights which led to a 
two-dimensional space. Last, the angle between the recurrent space 
and output space is computed by the MATLAB function subspace() 
between these two spaces. Higher dimensions of recurrent space 
expanded by more principle components were also tested.

RNNs without STP
To study whether STP affects the training and generalization in the 
temporal or spatial scaling tasks (Fig. 5), we modified the standard 
congruent temporal or spatial scaling task by removing the STP dy-
namics during training and testing. Specifically, we trained and tested 
RNNs with x = 1 (Eq. 2) and u = αU (Eq. 3) during the whole trial, 
while other variables and parameters remained the same.

RNNs with scale cued by a speed or size input
To compare the neuromodulation of STP strategy to using the input 
amplitude to cue different scales (Fig. 4): (i) we removed STP by fixing 
the variable u at 0.85*U and x = 1 across whole trials; and (ii) added a 
tonic input continuously presented across whole trials, the amplitude 
of which, cued either the length of the trials in the temporal scaling 
task or the size of the digit in the spatial scaling task. Specifically, 
0.9/0.85, 0.9/0.8, 0.9/0.7, 0.9/0.5, 0.9/0.3, or 0.9/0.1 corresponded to 

either 1/1.5 s or 1.5×/1× size, respectively. Generalization performance 
was tested similarly to the α-cued scale models. To study the intrinsic 
generalization of the input amplitude–cued model, we also trained the 
RNNs with a single–input amplitude level or single α value and tested 
them with different novel levels.

Simulations of the experimental sensorimotor timing task
IAFC task
Task parameters were the same as the experimental conditions for 
rats in the IAFC task (9). RNNs were composed of one input for 
delivering two stimuli lasting 150 ms with a range of intervals, 0.6, 
1.05, 1.26, 1.38, 1.62, 1.74, 1.95, and 2.4 s (short if interval < 1.5 s 
and long if >1.5 s), and two outputs corresponding to short or long 
choices, respectively. The target of the correct output was set to 1 for 
a response period of 200 ms right after the second-stimulus offset. 
The decision was made on the basis of the mean activity during the 
response period for the two outputs in a winner-take-all manner, 
and performance was defined as the percentage of the correct trials. 
RNNs were trained with α = 0.8 for all units and tested with 0.9 and 
0.7 to simulate the effect of optogenetic inactivation or activation of 
dopamine activity, respectively. We set σ (in Eq. 1) to 1 to match the 
noise level of the experiments. Same as the experiment, we fitted the 
long choice probability by a sigmoid function

where y represents the input intervals; P represents the probability 
of choice of long interval. A, bias, slope, and offset are the four fitting 
variables.
Flexible sensorimotor timing task
For the simulation of the Ready-Set-Go task (1), one input to the 
RNN delivered two stimuli lasting 100 ms with the intervals from a 
pool of 7 uniformly spaced intervals in the range of 0.5 to 1 s (sensory 
time, ts). On the basis of the context cued by α = 0.9 or α = 0.8, the 
output unit should generate a linear ramp (0 to 1) crossing threshold 
(0.75) at 1× or 1.5× the duration of sensory interval (the target time 
tt) beginning at the offset of the second stimulus (production time, tp). 
As in the experimental study, we defined a trial with tp as correct if the 
error = |tp − tt| was smaller than 0.2* tt + 0.025 s. Again, performance 
was defined as the percentage of the correct trials.
Statistical test
Unless otherwise stated, all the statistical tests were nonparametric 
and performed in MATLAB (MathWorks); the specific tests are stated 
in the figure captions; the data were presented in with Boxplot: central 
lines, median; bottom and top edges, lower and upper quartiles; 
whiskers, extremes; red cross, outliers.

Supplementary Materials
This PDF file includes:
Figs. S1 to S9
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