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Multiplexing working memory and time in 
the trajectories of neural networks

Shanglin Zhou    1,9, Michael Seay2,9, Jiannis Taxidis3,4, Peyman Golshani    5,6,7,8  
& Dean V. Buonomano    1,2,5 

Working memory (WM) and timing are generally considered distinct 
cognitive functions, but similar neural signatures have been implicated 
in both. To explore the hypothesis that WM and timing may rely on shared 
neural mechanisms, we used psychophysical tasks that contained either 
task-irrelevant timing or WM components. In both cases, the task-irrelevant 
component influenced performance. We then developed recurrent neural 
network (RNN) simulations that revealed that cue-specific neural sequences, 
which multiplexed WM and time, emerged as the dominant regime 
that captured the behavioural findings. During training, RNN dynamics 
transitioned from low-dimensional ramps to high-dimensional neural 
sequences, and depending on task requirements, steady-state or ramping 
activity was also observed. Analysis of RNN structure revealed that neural 
sequences relied primarily on inhibitory connections, and could survive the 
deletion of all excitatory-to-excitatory connections. Our results indicate 
that in some instances WM is encoded in time-varying neural activity 
because of the importance of predicting when WM will be used.

Working memory (WM) refers to the ability to transiently store infor-
mation, and subsequently use this information in a flexible manner 
for goal-oriented behaviours and decision-making1,2. Timing, here, 
refers to the ability to track elapsed time after a stimulus, to antici-
pate subsequent external events or generate appropriately timed 
motor responses3–5. Whereas it is widely recognized that the ability 
to transiently store information about the past and prospectively 
anticipate external events are among the most fundamental com-
putations the brain performs1–4,6–8, the fields of WM and timing have 
evolved mostly independently from each other because they have been 
seen as distinct cognitive functions with different underlying neural 
mechanisms. Yet, both share critical computational features. Both 
require transiently storing information, retrospective information 
in the case of WM and prospective information in the case of timing 
(for example, when a delayed reward will occur). In some cases, these 

properties are mirror images of each other. For example, a timer, such 
as a running hourglass, can be seen as encoding a transient memory 
that it was recently flipped over and of generating a prediction as to 
when an external event may occur.

Similar neural signatures—including ramping activity and neural 
sequences—have been associated with both WM and the encoding of 
time3,5,9–14. Although early groundbreaking studies suggested that WM 
is encoded in steady-state persistent neural activity15–17, there is ongo-
ing controversy regarding the neural encoding of WM9,10,18. Broadly 
speaking, in addition to steady-state persistent activity there are two 
additional broad classes of WM models9,10,19: (1) time-varying patterns of 
neural population activity, which can include low-dimensional ramping 
activity as well as high-dimensional neural trajectories (including, neu-
ral sequences) and (2) activity-silent mechanisms, in which short-term 
memory can be stored in the hidden state of neural networks—rather 
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between-participant differences in speed-accuracy trade-offs28. In 
the dDMS task (Fig. 1b) there was a main effect between standard 
and reverse trials (two-way ANOVA: F1,26 = 9.05, P = 0.006, effect size 
η2 = 0.071), indicating that the violation of temporal expectation in 
the reverse trials altered performance. There was also a main effect of 
the actual delay as expected from the well-known hazard rate effect 
(two-way ANOVA, F1,26 = 14, P = 0.0009, effect size η2 = 0.098) (ref. 29)—
after the short interval had elapsed there was increased certainty that 
the probe will appear at the long delay thus decreasing RT. We also 
examined the raw RT and trial accuracy independently (Supplementary 
Fig. 1a,b), both exhibited a main effect of reversal (two-way ANOVA, RT 
F1,26 = 7.41, P = 0.011, effect size η2 = 0.043; accuracy F1,26 = 13.4, P = 0.001, 
effect size η2 = 0.088). To further validate the results of this new task 
we performed a replication study (Supplementary Fig. 1e–j), which 
confirmed a significant standard–reverse effect in inverse efficiency 
(two-way ANOVA, F1,38 = 8.51, P = 0.006, effect size η2 = 0.031) and RT 
(two-way ANOVA, F1,38 = 9.02, P = 0.005, effect size η2 = 0.025). There 
was no main effect of accuracy but there was an interaction between 
standard and reverse and the actual delay (two-way ANOVA, F1,38 = 4.1, 
P = 0.05, effect size η2 = 0.025). These results establish that participants 
implicitly learned the task-irrelevant cue-delay association during 
a WM task, and that reversing the standard temporal contingency 
affected WM performance.

We next performed separate experiments using the explicit timing 
ISA task (Fig. 1c). Again, there was a significant main effect of reversal 
(two-way ANOVA, F1,21 = 11, P = 0.003, effect size η2 = 0.108) on inverse 
efficiency, as well as on RT (two-way ANOVA, F1,21 = 9.2, P = 0.006, effect 
size η2 = 0.031, Supplementary Fig. 1c) and accuracy (two-way ANOVA, 
F1,21 = 12.9, P = 0.002, effect size η2 = 0.141, Supplementary Fig. 1d). 
A replication study (Supplementary Fig. 1k–p), further confirmed 
a significant main effect of standard–reverse trials on inverse effi-
ciency (two-way ANOVA, F1,24 = 8.81, P = 0.007, effect size η2 = 0.093), RT 
(two-way ANOVA, F1,24 = 9.31, P = 0.006, effect size η2 = 0.045) and accu-
racy (two-way ANOVA, F1,24 = 7.78, P = 0.01, effect size η2 = 0.102). These 
results establish that reversing the cue-delay contingency impairs per-
formance on an explicit timing task in which the cue is task irrelevant, 
and thus that participants are, in effect, implicitly storing the cue in 
WM during a timing task.

Neural sequences in RNNs encoding WM and time
A large body of neurophysiological data across brain areas has revealed 
a multitude of neural signatures during WM and timing tasks, includ-
ing neural sequences12,30–35, and firing rate ramps36–39. Artificial neural 
networks, and RNNs in particular, have been invaluable in capturing 
the experimentally observed dynamics and explaining the dynamic 
regimes capable of storing WM and encoding time11,40,41, but to date, 
with some exceptions11, these attempts have primarily focused on 
either WM or timing tasks. Thus, anchored by our dDMS task, we next 
examined which dynamic regimes emerge in RNNs trained to encode 
both time and WM (Fig. 2). Having established that humans trained 
on the dDMS task implicitly learn its temporal structure, the RNNs 
were trained on a timing + WM (T + WM) task, in which the RNN had 
to learn both the WM and temporal expectation components. RNNs 
were also trained on two control tasks: a pure WM task without any 
timing requirements (WM task), and the ISA task that required the 
RNN to explicitly learn the cue-delay associations but not the match/
non-match-to-sample component. Note that these tasks do not per-
fectly parallel the psychophysical studies because the standard dis-
tinction between explicit and implicit learning used in the animal 
literature does not apply to simple RNN models. Animals or humans, 
for example, are always attempting to learn the temporal structure of 
tasks (implicit timing), presumably because predicting the onset of 
upcoming stimuli optimizes attentional resources even if the temporal 
structure is irrelevant to the task. This is not the case with RNNs. Thus, 
to provide an approximation of the explicit or implicit distinction 

than ongoing spiking activity—through mechanisms such as short-term 
synaptic plasticity (STSP). Ramping activity, neural sequences and 
STSP-based changes in the hidden state of networks have all been 
proposed to underlie timing as well3–5,20.

The diversity of neural regimes implicated in WM may, in part, be 
dependent on the presence or absence of implicit timing components. 
The brain is always attempting to learn the temporal structure of the 
external world even if it is not explicitly relevant to the task at hand7,21. 
Implicit timing enables prediction of when events will take place, thus 
allowing for preparation and optimal allocation of cognitive resources. 
Indeed, previous studies have suggested a link between WM and tim-
ing22,23, and recent human studies have demonstrated that WM can be 
impaired when information has to be retrieved at unexpected times7,24. 
Furthermore, some computational studies have implicitly linked the 
ability to encode elapsed time in a stimulus-specific manner11,14,25,26.

We examine the hypothesis that WM and timing are, in some 
cases, essentially the same computation, that is, a given stimulus and 
stimulus-specific elapsed time can be encoded in the same dynamic 
pattern of neural activity. We first developed two psychophysical tasks 
that use the same stimulus structure but vary whether the WM or tim-
ing components are explicit (required to solve the task) or implicit 
(task irrelevant). Participants learned task-irrelevant WM information 
during an explicit timing task, and task-irrelevant timing information 
during an explicit WM task. Given the ongoing challenges in identifying 
brain regions causally responsible for both the encoding of time and 
WM, and the success of using artificial neural networks to examine the 
neural dynamic regimes underlying a diverse set of cortical computa-
tions27, we trained recurrent neural networks (RNNs) on the same tasks 
the human participants performed. We show that cue-specific neural 
sequences emerge as the dominant regime for encoding memoranda 
and elapsed time from the onset of each memorandum, and that overall, 
training stages, task structure and hyperparameters captured much of 
the diversity of the experimentally observed neural dynamic regimes.

Results
The differential-delay-match-to-sample task
As a first step towards addressing a potential link between WM and 
timing, we developed variants of the standard delay-match-to-sample 
(DMS) WM task. In its simplest form, a DMS task presents either of two 
cues (in our case, a star or circle denoted by A or B, respectively), and 
following a delay period either of the two stimuli is presented again, 
resulting in four conditions (AA, AB, BA, BB). Participants are required 
to differentially respond to the match (AA, BB) versus non-match  
(AB, BA) conditions. Typically, the delay between the cue and probe is 
fixed or randomized, but in our differential-delay-match-to-sample 
(dDMS) task the cues predicted the delay duration (Fig. 1a). For exam-
ple, the AA and AB trials might be associated with a 1 s delay, and BA and 
BB trials with a 2.2 s delay—but the delay itself is task irrelevant. To deter-
mine whether participants implicitly learned the temporal structure 
of the task and whether unexpected delays altered WM performance, 
the cue-delay contingency was reversed in 20% of the trials (Methods). 
The second task (Fig. 1a, right), termed interval-stimulus-association 
task (ISA), was based on the same exact stimulus structure as the dDMS 
task but framed differently: participants were explicitly instructed to 
press one key when there was a short delay followed by A (short-A) or 
a long delay followed by B (long-B) and another key after long-A or 
short-B trials. In the ISA task the interval (delay) is explicitly relevant, 
but the cue (the first stimulus) identity is irrelevant as it just serves as 
an indicator of t = 0 for the interval. Note that during standard trials, 
the dDMS and ISA tasks are isomorphic—that is, the correct responses 
could be produced with either strategy—the difference between the 
tasks lies in the reverse trials (Fig. 1a).

To determine whether participants implicitly learned the cue- 
delay associations we analysed the inverse efficiency (reaction 
time (RT)/accuracy), a measure designed to take into account 

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01592-y

in the model, the cost weighting of the WM component was higher 
than that of the temporal component—that is, in the T + WM training 
prioritized learning of the WM component (Methods).

RNNs were composed of 256 units and had either one (WM, ISA) 
or two (T + WM) output units. The first output represented the motor 
response (for example, non-match detection), and the second output 
represented temporal expectation (implemented as a half ramp based 
on anticipatory licking data33). The network was composed of three 
weight matrices: WIn, the input to the RNN; WRNN, the recurrent weights 
and WOut, the connections from the RNN to the output. A number of 
steps were taken to enhance biological realism and improve our ability 
to dissect the mechanisms underlying the observed network dynamics 
(below): (1) Dale’s law was implemented; (2) to capture the low spon-
taneous activity rates of most cortical neurons a rectified linear unit 
(ReLU) activation function with a bias of zero was used and (3) to focus 
our mechanistic analyses on the structure of WRNN, biases of the RNN 
units and WIn were not trained (Methods).

The dynamics of the RNNs during the delay period were dra-
matically different between tasks. RNNs trained on the WM task pri-
marily converged to persistent fixed-point activity during the delay  
(Fig. 2a,b), in which individual units exhibited cue-specific constant 
levels of activity during the delay epoch (Fig. 2c). RNNs trained on the 
T + WM exhibited dynamic activity during the delay that when sorted 
according to latency resembled neural sequences (Fig. 2d,e). Indi-
vidual units in these RNNs often exhibited Gaussian-like time fields, in 
response to one cue and the absence of a response or a different time 
field in response to the second cue (Fig. 2f). The dynamics in the RNNs 
trained on the ISA task (Fig. 2g–i), was more mixed. Specifically, in the 
example shown in Fig. 2i–h both cues A and B triggered the same neural 
sequence (‘erasing’ WM information), followed by persistent activity 
after the initial 1 s period (corresponding to the short delay). This is 
an effective solution to the ISA task because a categorical encoding of 
short versus long intervals is sufficient to solve the task.

We compared the performance and dynamics of 17 RNNs trained 
on the three tasks. Performance was measured by the correct response 
of the motor unit. As expected, because the RNNs are trained on both 
the standard and reverse trials, performance was close to 100% on both 
conditions for all three tasks (Fig. 2j–k). To compare the dynamics of 

the RNNs across tasks we first quantified the effective dimensionality14 
and the sequentiality index33 across the delay periods (Methods). The 
dimensionality was significantly higher in the T + WM task compared to 
both the WM and ISA task (Wilcoxon rank sum test, n = 17, P = 3.58 × 10−7 
and P = 4.44 × 10−7, respectively), and there was a much smaller differ-
ence between the dimensionality for the WM and ISA tasks (Wilcoxon 
rank sum test, n = 17, P = 1.9 × 10−4). The selectivity index was also higher 
in the T + WM task compared to the WM and ISA tasks (Wilcoxon rank 
sum test, P = 7.05 × 10−7 and 7.46 × 10−5, respectively), and between 
the ISA and WM tasks (Wilcoxon rank sum test, P = 1.69 × 10−6). These 
results are consistent with the interpretation that RNNs converge to 
fixed-point attractors when they only need to encode WM, but to neural 
sequences when they need to encode both WM and elapsed time, and 
to mixed dynamics when they need to encode elapsed time and the 
nature of the first cue is task irrelevant (ISA task). We note, however, 
that there is some variability in the solutions RNNs converged to in each 
task, particularly during the WM and ISA task. Specifically, sequences 
could emerge during the WM tasks, while ramping activity and mixed 
dynamics could emerge in the ISA task (Supplementary Fig. 2).

The T + WM task was designed to capture the human psychophys-
ics data and, critically, in this task two distinct neural sequences gener-
ally encoded both WM and timing. There is no clear a priori reason that 
high-dimensional trajectories that approximate neural sequences, 
should emerge as the dominant solution to encode WM and time. 
Indeed, one might expect much lower dimensional cue-specific ramp-
ing activity to encode both WM and time (below and Discussion).

The transition from ramps to neural sequences over training
As stated above, either low-dimensional ramping activity or 
high-dimensional neural sequences can encode both WM and time. 
Furthermore, both types of dynamics have been observed experi-
mentally during WM or timing tasks12,30–34,36–39. So far, ramping activity 
and neural sequences have been treated as fundamentally different 
dynamic regimes to encode WM or time3,9,11,42. To determine whether 
this is indeed the case, we analysed the development of neural sequence 
across training in the T + WM task.

Visualization of RNN dynamics from early to late training stages 
revealed a continuous shift from steady-state activity, to ramps, to 
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Fig. 1 | Humans implicitly learn the timing component of a WM task and the 
WM component of a timing task. a, Schematic of the dDMS task and the explicit 
timing ISA task. Note that the response patterns for the dDMS and ISA tasks only 
differ during the reverse trials. b, Inverse efficiency (eff.) (RT/accuracy (acc.)) 
of human participants on the dDMS task across the standard (cyan) and reverse 
(orange) trials. The short and long delays reflect the duration of the actual delay 
epochs (for example, a long delay on a standard trial is an ‘expected’ delay, and a 

long delay on a reverse trial corresponds to an ‘unexpected’ delay). There was a 
significant main effect of standard versus reverse conditions (n = 27 participants, 
two-way ANOVA: F1,26 = 9.05, P = 0.006, effect size η2 = 0.071). c, Inverse efficiency 
in the ISA task across standard and reverse trials. There was a significant main 
effect of standard versus reverse conditions (n = 22 participants, two-way 
ANOVA, F1,21 = 11, P = 0.003, effect size η2 = 0.108). Data are presented as mean 
values ± s.e.m. ms is for millisecond as in RT.
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neural sequences, both at the population and single-unit level (Fig. 3a).  
Quantified across RNNs this transition was expressed as a progres-
sive increase in the dimensionality of network dynamics (Fig. 3b). 
As expected—because the WM task is the ‘explicit task’ (higher cost 
weighting)—the WM performance (that is, discrimination of match 
versus non-match trials) peaked very early in training while the dimen-
sionality was fairly low. At these early stages, timing, as measured 
by the loss function of the timing output (Fig. 3c) or by the ability to 
decode elapsed time from each cue (Fig. 3d), was poor but increased 
progressively over the course of training. Finally, there was a strong 
positive correlation between dimensionality and time decoding 
performance (Fig. 3e).

The transition from ramps to neural sequences was driven by the 
‘implicit’ timing component of the task, because WM performance was 
high early in training. These results indicate that the same RNN can 
smoothly transition between ramping activity and neural sequences, 
and additionally that in both experiments and computational models 
dimensionality may be dependent on the degree of training and how 
well any implicit timing component has been learned.

Multiplexing of WM and elapsed time
To quantify the ability of the RNNs trained on the three tasks to encode 
both WM and elapsed time, we used a support vector machine (SVM) 
to decode both cue and time (cue-time)—that is, elapsed time from 
the onset of each cue based on population activity. Visual inspection 
of a sample confusion matrix (predicted versus actual cue-time bin) 
revealed robust cue-time decoding in the T + WM task—and thus that 
cue-specific elapsed time could be decoded during the delay (Fig. 4a). 
In contrast, relatively little temporal information was present in the WM 
task dynamics. And while relatively good decoding of time was possible 
in the ISA task, ISA-trained RNNs often confused the cue that signalled 
the start of each delay. Specifically, the secondary diagonal lines of 
the confusion matrix indicate that the decoder was confused about 
whether time bins of 0.5–1 s were associated with cue A or B. Across 
all tasks, the median performance, as measured by the correlation 
between predicted and actual cue-time bins, was above 80% (Fig. 4b, 
left), indicating that even the apparently persistent fixed-point activ-
ity in the WM retained a substantial amount of temporal information. 
But decoding was progressively better from the WM, to ISA, to T + WM 
task as measured both the performance and mean squared error (MSE) 
(Fig. 4b, right; all pairwise comparisons were significantly different 
with P values of at most P < 10−6, Wilcoxon rank sum test). Consistent 
with the need for stimulus-specific encoding of time in the T + WM task 
and stimulus-independent encoding of time in the ISA task, cross-cue 
decoding of time revealed very poor performance in the T + WM (and 
WM) tasks, but good decoding in the ISA task (Supplementary Fig. 3).

We next asked whether WM memory and time were multiplexed 
at the level of individual units—as opposed to, for example, a modular 
strategy in which some units encoded WM and others time. Analysis of 

the correlation of the mean activity during the delay epochs revealed 
largely non-overlapping populations of units activated in response to 
the short and long cues in the WM and T + WM tasks but largely over-
lapping in the ISA task (Fig. 4c,d). The median Pearson correlation was 
close to zero across RNNs for the WM and T + WM tasks, but above 0.75 
in the ISA task. These results reflect the preservation of cue-specific 
information during the delay period in the WM and T + WM tasks, but 
significant loss of cue-specific information during an explicit timing 
task (ISA). The multiplexing of WM and timing information in the 
T + WM task at the level of individual units was confirmed in the high 
levels of mutual information individual units contained about both 
cue and elapsed time, as well as the high degree of correlation between 
them (Supplementary Fig. 4).

Neural sequences rely heavily on inhibitory connectivity
Dynamic regimes that generate neural sequences have been observed 
in many brain areas12,30–35,43, and produced in a number of artificial neu-
ral network models13,14,25,44,45. While these studies have led to critical 
insights into the potential circuit mechanisms underlying neural 
sequences, the mechanisms underlying regimes in which the same 
units participate in multiple sequences, as well as the contribution of 
different synapse classes, are not fully understood. To begin to dissect 
the circuit principles underlying the emergence of neural sequences 
in the T + WM task we partitioned WRNN into its four submatrices (WRNN

Ex←Ex, 
WRNN

Ex←Inh, WRNN
Inh←Ex, WRNN

Inh←Inh), and ordered both the pre- and postsynaptic 
neurons of the matrix according to peak firing latency during the delay 
(the long delay was used for visualization purposes). The sorting was 
performed separately for the Ex and Inh populations (Fig. 5a). Next, to 
extract any general structure underlying the neural sequences we aver-
aged the segmented and sorted weight matrices across all 17 RNNs into 
a master weight matrix (Fig. 5b–d). Note that the weights of the entire 
network are shown, including the units that never active during the 
long delay or whose peak was outside the delay—which were placed 
first in the sorting order—thus it is the weight structure of the latter 
units of the sorted sequence that are associated with the neural dynam-
ics during the delay epoch. Additionally, the number of units partici-
pating in the delay dynamics varied considerably across RNNs. Despite 
these substantial sources of variability, a dominant diagonal compo-
nent is visible in the synaptic structure of all four weight submatrices 
in the T + WM task.

To quantify the structure of weight submatrices, we averaged the 
weights according to the relative differences in peak activity latency 
of the presynaptic units (essentially the average of the diagonals in  
Fig. 5b–d), allowing for the visualization of the net synaptic relation-
ships between a presynaptic unit and the postsynaptic units that fired 
before or after it (Fig. 5e–g). In the T + WM task, all four weight subma-
trices revealed peaks centred at approximately zero (corresponding 
to the main diagonal of the submatrices in Fig. 5c). The WRNN

Ex←Ex subma-
trix reveals that presynaptic excitatory units provide above-average 

Fig. 2 | Differential dynamics for the encoding of WM and time across in RNNs 
trained on three tasks. a, Schematic of the RNN architecture and the inputs 
and target outputs for the WM task during the control and reverse conditions. 
b, Neurograms during the AA (upper row) and BA (lower row) conditions (A, red 
line above neurogram; B, green), sorted according to the peak time during the 
short (left) or long (right) delays (standard trials), the images in left and right 
subpanels of each row is based on the same data, but differentially sorted. The 
self-sorted neurograms (top left and lower right) are cross-validated (average 
of even trials sorted on average of odd trials). Only the top 50% of units with the 
highest peak activity during the delay are shown. Heat map is normalized to one 
for each unit. The overlaid white line shows the ‘motor’ unit (right y axis). c, Mean 
activity of two sample units across all four trial types of the standard condition. 
d–f, Similar to a–c for the T + WM task: schematic (d), neurograms (e) and mean 
activity (f). In e the activity of the ‘temporal expectation’ output unit is shown in 
the overlaid grey lines. Note that while each cue elicits a neural sequence, each 

sequence is different, reflecting the embedding of multiple sequences within the 
RNN. g–i, Same as a–c for the ISA task: schematic (g), neurograms (h) and mean 
activity (i). Note that in this example both cues A and B elicit approximately the 
same neural sequence (h), and the units show similar time fields in response to 
cues A and B (i). j–m, Quantification across 17 RNNs trained on the three tasks. 
Performance (correct match/non-match responses) during standard (j) and 
reverse (k) trials, dimensionality during the delay epoch of the concatenated 
activity during the short and long trials (l, Wilcoxon rank sum test, n = 17, 
P = 3.58 × 10−7 and P = 4.44 × 10−7 for T + WM versus WM and ISA, respectively), and 
the sequentiality (Seq.) index during the long trials (m, Wilcoxon rank sum test, 
n = 17, P = 7.05 × 10−7 and 7.46 × 10−5 for T + WM versys WM and ISA, respectively). 
Whisker plots represent medians (circle centres), the interquartile range (boxes) 
and the most extreme values within 1.5× the interquartile range above or below 
the interquartile range (whiskers), dots represent ‘outlier’ values.
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input to excitatory units that fire shortly before and after it. The con-
nectivity was biased in the forwards compared to the backwards direc-
tion. While there were differences in the WRNN

Ex←Ex  submatrix between 
the T + WM task compared to the other tasks, it was the inhibitory 
connections that were most distinct. For example, the WRNN

Ex←Inh tuning 
was the broadest and much stronger in the T + WM task. Thus, there 

was a marked window of disinhibition from inhibitory to excitatory 
neurons with similar time fields (Fig. 5f)—in other words, the Inh units 
did not inhibit the excitatory neurons that activated them, but strongly 
inhibited ‘past and future’ excitatory (Ex) units (Discussion). To estab-
lish a causal link between the structure of each weight submatrix and 
the observed neural dynamics we examined RNN performance after  

0 0.5 1.0 1.5 2.0 2.5
0

0.02

0.04

0.06

0.08

Ac
tiv

ity
 (a

.u
.)

A
A
B
B

A
B

A
B

0 0.5 1.0 1.5 2.0 2.5
Time (s)

0

0.05

0.10

0 0.5 1.0 1.5 2.0 2.5
0

0.02

0.04

0.06

Ac
tiv

ity
 (a

.u
.)

A
A
B
B

A
B

A
B

0 0.5 1.0 1.5 2.0 2.5
Time (s)

0

0.02

0.04

0.06

0 0.5 1.0 1.5 2.0 2.5
0

0.005

0.010

0.015

Ac
tiv

ity
 (a

.u
.)

A
A
B
B

A
B

A
B

0 0.5 1.0 1.5 2.0 2.5

Time (s)

0

0.05

0.10

0.15

0.20

20
40
60
80

100
120

U
ni

ts
 (s

or
t b

y 
AA

)
0

1 M
otor (w

hite)

U
ni

ts
 (s

or
t b

y 
BA

)

0

1

U
ni

ts
 (s

or
t b

y 
BA

)

0

1

0 0.5 1.0 2.0
Time (s)

20
40
60
80

100
120

U
ni

ts
 (s

or
t b

y 
AA

)

0

1

20
40
60
80

100
120

0

1 M
otor (w

hite)
Tim

e (grey)

0

1

U
ni

ts
 (s

or
t b

y 
BA

)

0

1

20
40
60
80

100
120

0

1

20
40
60
80

100
120

0

1

M
otor (w

hite)

0

1

0

1

20
40
60
80

100
120

0

1

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 (s
ta

nd
ar

d)

WM

T +
 W

M ISA
0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 (r
ev

er
se

)

WM

T +
 W

M ISA

D
im

en
si

on
al

ity

WM

T +
 W

M ISA
0.25

0.30

0.35

0.40

0.45

0.50

Se
q.

 in
de

x

WM

T +
 W

M ISA

A

B

Out

Standard Reverse
Activity (a.u.)0

1

Activity (a.u.)0

1

Activity (a.u.)0

1

1.5 2.5

0 0.5 1.0 1.5 0 0.5 1.0 1.5

0 0.5 1.0 2.0
Time (s)

1.5 2.5

0 0.5 1.0 1.5 0 0.5 1.0 1.5

0 0.5 1.0 2.0
Time (s)

1.5 2.5 0 0.5 1.0 2.0

Time (s)
1.5 2.5

0 0.5 1.0 2.0
Time (s)

1.5 2.5 0 0.5 1.0 2.0
Time (s)

1.5 2.5 

0 0.5 1.0 1.5 0 0.5 1.0 1.5

U
ni

ts
 (s

or
t b

y 
AA

)

P = 4.44 × 10–7P = 3.58 × 10–7 P = 7.46 × 10–5P = 7.05 × 10–7

WM

A

B

Out

Standard Reverse

T + WM

A

B

Out

Standard Reverse

ISA

Out

a b c

d e f

g h i

j k ml

0

2

4

6

8

10

12

14

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01592-y

shuffling all non-zero weights in each submatrix (Supplementary  
Fig. 5). Shuffling either of the excitatory or inhibitory matrices resulted 
in catastrophic drops in performance in the WM and ISA tasks. By 
contrast, for the T + WM task shuffling the excitatory weights (WRNN

Ex←Ex 
or WRNN

Inh←Ex) led to median performance levels of approximately 75%, 
while shuffling the inhibitory weights (WRNN

Ex←Inh  or WRNN
Inh←Inh) resulted in 

near-chance performance. The distinct weight matrix structure and 
the presence of strong feed-forward modes in the RNNs trained on the 
T + WM task were also evident in the higher magnitude of the Schur 
modes of the weight matrix (Supplementary Fig. 6).

These results indicate that for the same RNN to generate multiple 
sequences with shared units, it relies more on the connectivity struc-
ture of inhibitory connections than excitatory connections (that is, 
both WRNN

Ex←Ex and WRNN
Inh←Ex ). Specifically, the partial resistance to shuf-

fling Ex → Ex or Ex → Inh weights indicates that the specific weight values 
of the non-zero connections are not as important as those of the 
Inh → Ex or Inh → Inh weights. Indicating that the excitatory weights 

provide a non-specific excitatory drive, unit at any moment in time 
drive inhibitory units that specifically inhibit all other Ex units while 
opening a window of disinhibition for the current and next excitatory 
units in the sequence. These results generate the prediction that the 
most important site of plasticity for the generation of neural sequences 
is inhibitory plasticity onto excitatory neurons rather than between 
excitatory neurons.

Importance of hyperparameters
To determine whether the emergence of neural sequences was depend-
ent on RNN hyperparameters we contrasted the RNN dynamics trained 
on all three tasks across different hyperparameter configurations 
(Methods), including learning rate, L2 activity regularization, noise 
in the recurrent units, WRNN initialization, presence or absence of Dale’s 
law, activation function and the profile of the temporal expectation 
function (half versus full ramp), and the weighting of the WM and  
timing components (‘implicit’ versus ‘explicit’). Each hyperparameter 
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Fig. 3 | Transition from low-dimensional ramping to high-dimensional neural 
sequences over the course of training in the T + WM task. a, Temporal activity 
profile of a sample unit (top) and neurograms (bottom) of activity in an RNN 
trained on the T + WM task at the stages of training corresponding to the vertical 
coloured lines in b. Note that in the neurograms the sorting order of the units 
in the panels is different. b, Performance of WM and population dimensionality 

(during the delay period) across training. The grey vertical line denotes when 
the mean WM performance reached 0.95. c, Learning curve of the loss for 
the timing output. d, Same as c for MSE of the decoding of elapsed time from 
each cue. e, Relationship between the dimensionality and decoding time MSE 
averages across 17 RNNs (Pearson correlation, r = 0.947, P = 2.91 × 10−124). Data are 
presented as mean values ± s.e.m. for b–d.
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took on values anchored around the default set of parameters used 
above, for a total of 366 RNNs over 12 seeds and the three tasks. Across 
all hyperparameters (Supplementary Fig. 7), with one exception, the 
dimensionality of the dynamics during the delay period was signifi-
cantly higher in the T + WM task compared to the WM task (P values of 
at most 10−4, Wilcoxon rank sum test) and the ISA task (P values of at 
most 0.001, Wilcoxon rank sum test). We also confirmed the generality 
of the observed increase in dimensionality across training (Fig. 3) for 
a subset of hyperparameters and multiplexing of time and WM for all 
hyperparameters studied (Supplementary Fig. 8a,b).

The clear exception to the formation of higher dimensional 
regimes in the T + WM task was the use of the softplus activation func-
tion versus the default ReLU function. Convergence was significantly 
worse for the softplus compared to ReLU activation function in the 
T + WM task (n = 12, P = 3.66 × 10−5, for the final loss value, Wilcoxon rank 
sum test). The dimensionality of the dynamics for the RNNs trained 
with the softplus function was uniformly low at a value of two for all 
tasks. These data indicate that the use of a softplus function shifts 
the encoding of time and WM in the T + WM task to ramps rather than 
population clocks (Supplementary Fig. 9). Indeed, by fitting the activ-
ity of the RNN units to both linear ramps and Gaussians during the 
delay, we observed a dramatic shift in the goodness of fit; while the 
units from RNNs trained with the ReLU activation function were on 
average very poorly fit by linear ramps, softplus units were fit well 
(Supplementary Fig. 8c,d). Consistent with the results above, indicating 
that low-dimensional ramps are not well suited to flexible timing, the 

ability of softplus RNNs to generate the half-ramp timing output was 
worse (the MSE of the timing units was significantly higher compared 
to the ReLU RNNs; P = 4.69 × 10−5, Wilcoxon rank sum test). The shift 
from high- to low-dimensional regimes with the softplus activation 
function, may be a result of its worst performance and an interaction 
between the learning algorithm and the continuous derivative of the 
softplus function (Discussion).

As mentioned above, depending on brain area, both the high- 
dimensional neural sequences and low-dimensional ramps are indeed 
observed in timing and WM tasks (Discussion). Thus our results estab-
lish that RNNs can account for both these experimentally observed 
regimes in a hyperparameter-dependent fashion. Raising the possi-
bility that differential intrinsic neuronal properties in different areas 
could contribute to their observed dynamics.

Across all other hyperparameters, the dimensionality was higher 
in the T + WM task. Interestingly, some hyperparameters had surprising 
effects on the relative contribution of excitatory and inhibitory units. 
As described above, in the T + WM task the weights from the excitatory 
units contributed less to the dynamics than that of the inhibitory 
weights (Fig. 5 and Supplementary Fig. 5), this phenomenon was further 
amplified when the noise of the recurrent units (σRNN) was increased 
from 0.005 to 0.05 (Fig. 6). At the default noise level of σRNN = 0.005, 
deletion of all excitatory-to-excitatory weights (that is, zeroing the 
entire WRNN

Ex←Ex submatrix after training), resulted in a catastrophic drop 
in performance. Note that even in the absence of excitatory-to-excitatory 
connections (and biases of zero) some activity is driven by the noise. 

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rf

or
m

an
ce

WM

T +
 W

M ISA
0

10

20

30

40

M
SE

WM

T +
 W

M ISA0.5 1.0 0.5 1.0 1.5 2.0

Predicted time (s)

0.5

1.0

0.5

1.0

1.5

2.0

Ac
tu

al
 ti

m
e 

(s
)

0.5 1.0 0.5 1.0 1.5 2.0

Predicted time (s)
0.5 1.0 0.5 1.0 1.5 2.0

Predicted time (s)

0 10 20 30

Short delay activity (a.u.)

0

5

10

15

20

25

30

Lo
ng

 d
el

ay
 a

ct
iv

ity
 (a

.u
.)

0 1 2 3 4

Short delay activity (a.u.)

0

2

4

6

8

10

12

0 5 10 15 20

Short delay activity (a.u.)

0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

WM

T +
 W

M ISA

C
or

r. 
Ac

t sh
or

t ×
 A

ct
lo

ng

r = 0.159 
P = 0.011

r = –0.106
P = 0.092

r = 0.731 
P = 3.924 × 10–44

P = 3.92 × 10–6P = 0.654

WM T + WM ISA
a b

c d

Short

Long

P = 7.04 × 10–7P = 7.04 × 10–7
P = 7.05 × 10–7P = 7.05 × 10–7

0

1

D
ecoded tim

e ratio (a.u.)
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0.5–1 s during the short (cue A) and long (cue B) delays as reflected in the 
off-diagonal bands. b, Performance (left, Wilcoxon rank sum test, n = 17, 
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sum test, P = 7.04 × 10−7 for T + WM versus WM and ISA) of the decoders across 
17 RNNs. c, Correlation between unit activity for sample RNNs during the short 
and long delays in the WM (left, Pearson correlation, n = 17, r = 0.159, P = 0.011), 
T + WM (middle, Pearson correlation, r = 0.106, P = 0.092) and ISA (right, Pearson 

correlation, r = 0.731, P = 3.924 × 10−44) tasks. d, For the WM and T + WM tasks 
there was little or no average correlation (Corr.) across all units within each 
RNN (n = 17 RNNs in each group). In the ISA task average correlation between 
unit activity (Act) in the short and long delay was high and significantly above 
the WM and T + WM tasks (Wilcoxon rank sum test, n = 17, P = 5.58 × 10−5 and 
P = 3.92 × 10−6). Additionally, only the ISA correlation was significantly different 
from 0 (two-sided Wilcoxon signed rank test, P = 2.93 × 10−4). Whisker plots 
represent medians (circle centres), the interquartile range (boxes) and the 
most extreme values within 1.5× the interquartile range above or below the 
interquartile range (whiskers), dots represent ‘outlier’ values.
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At noise levels of σRNN = 0.05, ablation of all excitatory-to-excitatory 
connections, only had a modest effect on the dynamics and perfor-
mance (median greater than 90%) during the T + WM task (Fig. 6c,d). 
Critically, in the ISA task deletion of excitatory-to-excitatory weights 
decreased performance to chance. In other words, there is a funda-
mental shift in circuit architecture when RNNs encode a single sequence 
(ISA) versus two sequences (T + WM). In the former case, RNNs rely on 
excitatory-to-excitatory connections, but in the latter case RNNs can 
operate relatively well in the absence of recurrent excitation.

In the context of neurobiological circuits, our interpretation 
of these findings is that when encoding cue-specific elapsed time, 
in some contexts, including high noise, RNNs autonomously con-
verge to circuits architectures that resemble the circuit motifs of the 
striatum, cerebellum and CA1: that is, circuits in which there are no 
excitatory-to-excitatory connections, which are driven by external 
input and negative—rather than positive—feedback loops26,46.

Dynamic attractors
Whereas it is widely accepted that the neural dynamics generated by 
recurrent neural circuits play a fundamental computational role in WM 
and timing, the dynamics itself has generally been interpreted in the 
context of standard dynamical system regimes of fixed-point attractors, 
saddle points, line attractors and limit cycles. The high-dimensional 
trajectories and neural sequences observed in the T + WM tasks do 
not seem to neatly fit into these classes. But as with standard dynamic 
regimes, a critical question pertains to the stability of the trajecto-
ries: that is, when perturbed, do trajectories further diverge, remain 
approximately parallel or converge back to the original trajectory? 
To address this question, we performed perturbation experiments 
during the delay period.

We initially contrasted perturbed and unperturbed trajectories 
in the presence of frozen noise in RNNs trained on the T + WM task. 
At the level of individual units, the perturbation immediately altered 
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Fig. 5 | Circuit motifs underlying the generation of multiple neural 
sequences. a, Absolute weights of a sample recurrent weight matrix before 
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activity levels, but over the course of hundreds of milliseconds, not 
only did activity converge back to the unperturbed levels, but it also 
converged in a manner that preserved the original temporal alignment 
(Fig. 7a). The effect of the perturbation at the population level can be 
visualized in the cross-Euclidean distance matrix (Fig. 7b), which shows 
that after the perturbation the main diagonal seems to converge back 
to close to zero. If the trajectory remained parallel to the original, 
the diagonal would not return to zero; and if it converged back, but 
either ahead or behind in time, the minimal values would be off the 
main diagonal. To quantify the effects of perturbations across RNNs 
trained on all three tasks we plotted the distance of the main diagonal 
between the perturbed and unperturbed trajectories (Fig. 7c). While 
the distance does not generally converge to exactly zero, the perturbed 
trajectory always converges back towards the unperturbed trajectory. 
These results are consistent with the notion that RNNs trained on 
the T + WM task implement dynamic attractors, that is, locally stable 
transient channels47,48 in which the dynamic attractor is a ‘hypertube’. 
Within limits, perturbations of the trajectory can return to the hyper-
tube in motion. The stability of the neural sequences in the T + WM 
task was quantitatively comparable to the fixed-point attractor-like 
dynamics in the RNNs trained on the WM task and both are signifi-
cantly better than that trained on ISA tasks (Wilcoxon rank sum test, 
P = 1.32 × 10−6 and P = 0.0012 for WM versus ISA and T + WM versus ISA 
groups, respectively).

Discussion
WM and the ability to encode and tell time on the scale of seconds—
and thus predict and anticipate external events—are critical to a wide 

range of cognitive and behavioural tasks. Here we propose that, in some 
instances, WM and the encoding of elapsed time may be two sides of 
the same coin, that is, both WM and elapsed time are represented in the 
same neural code. This link between WM and time is supported by our 
findings, and previous findings, that WM is impaired when information 
has to be recalled at unexpected times7,24, and evidence that in many 
cases WM is encoded in time-varying patterns of activity9,10,18,30,36,49.

We first showed that during a WM task (dDMS), participants implic-
itly learn the task-irrelevant cue-delay associations, and that the time 
at which the memorandum is accessed not only alters task RT, but 
accuracy as well. Conversely, during an explicit timing task (ISA), the 
task-irrelevant cue that marks t = 0, also influenced both RT and accu-
racy. These findings are consistent with results showing that when 
stimulus-specific temporal structure is present during WM memory 
tasks, that recall is ‘dynamically prioritized’24. These psychophysical 
results, of course, do not establish that WM and time are multiplexed 
at the neural level, but demonstrate an interaction.

The observation that humans learn the temporal structure of the 
dDMS task justified training RNNs on a task that required learning of 
WM and elapsed time (the T + WM task). RNNs are not well suited to 
study certain psychophysical phenomenon, including implicit learning 
and behavioural RTs, as they are not bounded by evolutionarily cog-
nitive strategies or resource optimization constraints. But they have 
consistently captured the dynamic regimes observed in the brain and 
provided insights into the biological circuit mechanisms underlying 
the dynamics27,40,41,50. Indeed, consistent with these previous studies, 
our results revealed RNN dynamics that mirrored a large range of 
experimental observations.
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three tasks fell from near perfect to chance on deleting all Ex → Ex connections. 
c, Dynamics corresponding to a in a sample RNN with noise σ = 0.05 before (left) 
and after (right) ablation of all Ex → Ex connections. d, In the presence of higher 

noise levels, the deletion of all Ex → Ex connections had a modest effect on the 
performance of the T + WM task and a moderate effect on the WM task. Activity 
scales are the same in the left and right neurograms of panels a and c. Data from 
the same set of stimulations in Supplementary Fig. 7 (n = 12 in each group). 
Whisker plots represent medians (circle centres), the interquartile range (boxes), 
and the most extreme values within 1.5× the interquartile range above or below 
the interquartile range (whiskers).
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Fixed-point and dynamic representations
Early experimental15,16 and computational51,52 studies of WM focused 
on stable persistent activity, and provided an intuitive computa-
tional framework to transiently store memory information in a 
time-independent fashion. That is, precisely because information was 
encoded in a fixed-point attractor, a given memorandum could be 
retrieved at any time using the same encoding and decoding scheme. 
A counterintuitive aspect of storing WM in time-varying neural tra-
jectories is that the downstream circuits must recognize that even 
though the code is changing in time, the memorandum is the same11. 
However, as long as WM is encoded in unique non-overlapping trajec-
tories, downstream areas can either automatically generalize across 
time42 or learn to recognize the trajectory at all time points—a process 
that could occur during memory consolidation. Here, even though the 
dynamics during the delay period of the T + WM task was time-varying 
and high-dimensional, performance was near perfect at the learned 
standard and reverse delays, and generalized to new intermediary 
intervals (Supplementary Fig. 10).

Dynamic activity has been observed during the delay period in many 
WM tasks, and it has been shown that the temporal structure of tasks can 
itself influence the observed dynamics. For example, a task with a fixed 
delay generated transient dynamics in a premotor area, while random 

delays resulted in more persistent and stable patterns53. However, in 
another study, the sequentiality of population activity in the prefron-
tal cortex was larger in a WM task with a random compared to a fixed 
delay54. One advantage of the dDMS task—in contrast to standard DMS 
tasks in which all stimuli share the same delay—is that if WM is encoded 
in persistent stable activity, both memoranda should elicit fixed-point 
dynamics. However, if WM is multiplexed with time, the duration or 
speed of the dynamics should be distinct across different memoranda.

Ramps versus sequences
There is ongoing debate regarding the neural regimes underlying both 
WM and the coding of elapsed time on the scale of seconds. Critically, 
however, with the exception of stable persistent activity, the candi-
date mechanisms for both WM and timing are largely overlapping. 
Ramping activity, neural sequences, complex neural trajectories and 
‘activity-silent’ models have all been raised as possible mechanisms for 
both WM and timing. In the context of WM, activity-silent mechanisms 
have generally focused on STSP, which can maintain a memory of previ-
ous activity in the absence of ongoing neural activity9,19,55. Similarly, early 
computational models and subsequent experimental results indicate 
that STSP underlies some forms of sensory timing, by encoding elapsed 
time in the so-called ‘hidden state’ of neural circuits20,56.
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Fig. 7 | Neural sequences instantiate dynamic attractors. a, Activity profile 
(left) of a sample of 10 units in response to the B stimulus (long cue) in the 
absence (black) and presence (red) of a perturbation (frozen noise) for the 
T + WM task, and the unperturbed and perturbed neural trajectories in principal 
components (PC) analysis space (right). Note that the trajectory converges 
back to the unperturbed trajectory in an approximately time-aligned manner 
as indicated by the overlapping time marker spheres. b, Cross-Euclidean 
distance matrix between the unperturbed and perturbed trajectories. c, Mean 

Euclidean distance between the unperturbed and perturbed trajectories after 
the perturbation at 0.5 s averaged across 17 RNNs (left, data are presented 
as mean values ± s.e.m). Comparison of median Euclidean distance values 
averaged across the same 17 RNNs 1 s after the perturbation (t = 1.5, dashed line, 
right, Wilcoxon rank sum test, P = 1.32 × 10−6 and P = 0.0012 for WM versus ISA 
and T + WM versus ISA respectively). Whisker plots represent medians (circle 
centres), the interquartile range (boxes) and the most extreme values within  
1.5× the interquartile range above or below the interquartile range (whiskers).
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Neural sequences and high-dimensional activity have been observed 
across many brain areas during WM and timing tasks12,30–34,54,57–59.  
Conversely, low-dimensional ramping activity has also been observed 
across areas and tasks36–39,60–62. Furthermore, even within a single brain 
area different classes of excitatory neurons may differ in the degree to 
which they encode time and WM37. The diversity and complexity of the 
experimental findings make it challenging to develop area-specific 
computational models. But here we have shown that depending on task 
structure and hyperparameters RNNs converge to fixed-point attrac-
tors, ramping firing rate, or neural sequences. Critically, we show that 
from the perspective of the circuitry generating the dynamics, ramps 
and neural sequences may not represent fundamentally different 
regimes since we observed a transition from ramps to neural sequences 
over the course of training.

It is notable that although across all hyperparameters WM and 
timing were multiplexed, the softplus activation function dramatically 
shifted RNN dynamics from encoding time in neural sequences to ramp-
ing activity (Supplementary Figs. 8c,d and 9). Our results are consistent 
with the fact that ReLU activation function is often considered to lead 
to better convergence than softplus activation63 as convergence time 
and final cost values were worse with the softplus function. Arguably, 
one might also consider the ReLu function to be more naturalistic in 
that it would seem to better capture the discrete nature of neuronal 
thresholds and can have output values of zero. However, there are 
counterarguments based on noise-induced ‘smoothing’ that continu-
ous functions may be more naturalistic64,65. Future studies will have to 
examine the strong impact of the activation function on RNN dynam-
ics, but our results reveal a strong interaction between the learning 
algorithm and the continuous derivative of the softplus function.

The current study does not speak to activity-silent models, 
but provides insights to the potential trade-offs between encoding 
information in neural sequences and ramping activity. Specifically, 
despite their apparent complexity and higher dimensionality, neural 
trajectories approximating neural sequences emerged in a highly 
robust manner across ReLU RNNs trained on the T + WM task. This is 
consistent with previous RNN models trained on WM or timing tasks, 
in which neural sequences were observed41,66,67 and models of WM 
that rely on sequential dynamics13. A previous computational study 
has observed the emergence of low-dimensional ramping dynamics 
that can encode time during WM tasks11, this study however, did not 
examine tasks that require stimulus-specific encoding of WM and 
time. The low-dimensional dynamics observed in that study are con-
sistent with those obtained here with the softplus activation function, 
but a direct comparison is difficult because that study used smaller 
RNNs that did not implement Dale’s rule (and tanh activation func-
tion). Here we show that task structure, hyperparameter choices and 
training stages, probably account for these differences. But a critical 
question across experimental and computational studies pertains to 
the computational trade-offs between the high- and low-dimensional 
representations of WM and time. One clear trade-off pertains to ease of 
generalization to new delays, and the use of the neural representations 
by downstream areas to create arbitrary time-varying outputs. While 
ramping activity in RNNs is a highly limited representation in terms 
of its ability to generate outputs other than ramps (including the half 
ramp used here), ramps are well suited to temporal generalization42. 
In contrast, neural sequences provide a robust high-dimensional set 
of basis functions that can drive arbitrarily complex temporal outputs 
including the default half ramp used here33.

Conclusions and predictions
Internally generated high-dimensional neural trajectories, including 
neural sequences, have been reported in a large number of brain areas 
across many tasks12,30–34,43,54,57–59 and present in many computational 
models14,41,47,66,68. We postulate that this is because neural sequences 
represent a canonical dynamic regime to encode WM, time and 

generate motor patterns. The relatively high dimensionality, stability 
and quasi-orthogonality of neural sequences, make them well suited for 
downstream areas to generate either simple or complex time-varying 
output patterns33. Our results predict that neural sequences observed 
in vivo are not solely the product of feed-forward architectures as pro-
posed in some models45,69, but require recurrent connectivity that can 
implement feed-forward dynamics. These results are in general agree-
ment with those of Rajan et al.14 and Orhan and Ma66, which show that 
neural sequences emerge from non-symmetric but recurrent con-
nectivity. In contrast to those studies, however, we implemented sepa-
rate populations of excitatory and inhibitory neurons, and found that 
inhibitory (Inh → Ex and Inh → Inh) connections were more important 
than excitatory (Ex → Ex and Ex → Inh) connections (Supplementary 
Fig. 5). We also observed that in some hyperparameter regimes RNNs 
could perform well even after deletion of all Ex → Ex connections  
(Fig. 6). Overall our results indicate that sequence generation may 
rely on non-specific excitation (for example, reflected in the fact that 
shuffling the non-zero Ex → Ex weights did not dramatically impair 
performance in the default RNNs) that lead to suprathreshold activ-
ity through a transient window of disinhibition26. In other words, the 
active population of inhibitory units, disinhibit the currently active and 
to be activated excitatory neurons while blanketing the off-diagonal 
excitatory neurons with inhibition. Regarding the biological mech-
anisms underlying the emergence of neural sequences our results 
also predict that neural sequences are strongly dependent on inhibi-
tory plasticity, and paradoxically, can be independent of structured 
excitatory-to-excitatory connections50.

Consistent with the notion that memory serves both retrospec-
tive and prospective functions22,70, we propose that when WM tasks 
contain temporal structure, WM and time are multiplexed either in 
neural sequences or ramping activity. Furthermore, the diversity of 
experimentally observed neural correlates in WM studies, is in part 
a reflection of temporal structure of the tasks used. The dDMS task 
provides a means to address the interaction between WM and implicit 
timing, as it allows for comparison of the neural dynamics in response 
to stimuli that have the same WM requirements, but different temporal 
requirements as to when items in WM will be used.

Multiplexing of WM and time impose additional challenges for 
downstream decoding42, and is unlikely to be a universal encoding 
scheme for WM. However, multiplexing of WM and time may comprise 
an effective computational strategy in some instances, because, in 
addition to the need to transiently store retrospective information the 
brain is continuously attempting to predict when external events hap-
pen, including when WM will be used. Additionally, WM and time may 
be multiplexed because it provides a learned task-dependent manner 
to control how long items need to be stored, potentially implementing 
an expiration time on storage and optimizing cognitive resources.

Methods
Human psychophysics
All human psychophysics experiments were approved by the Insti-
tutional Review Board of UCLA (IRB no. 20-001801, issued on 21 
September 2020). Participants provided informed consent before 
participating and were paid for their participation. Experiments were 
conducted online, with hosting provided by Gorilla (https://gorilla.sc/)  
and recruitment provided by Prolific (https://www.prolific.co/). 
The precision and accuracy of timing on the Gorilla platform (that 
is, of visual presentation and RT provides temporal precision with 
standard deviations of approximately 8–21 ms depending on the 
exact browser, operating system and device. Participants accessed 
the experiment using personal computers running Google Chrome 
or Mozilla Firefox. No other device types (that is, phones or tablets) 
or browsers were allowed. All analyses relied on within-participant 
statistics, thus decreasing the impact of cross-platform variability. 
Participants on the Prolific platform were only eligible for the study 
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if they were between the ages of 18 and 40, residing in the United 
States, fluent in English and had never participated in an online study 
from our laboratory on Prolific. Before beginning the task, partici-
pants read and signed an informed consent form that asked them to:  
(1) complete the study in a quiet place without distractions, (2) maxi-
mize their browser window and not adjust it during the experiment, 
(3) have normal or corrected-to-normal vision and (4) not participate 
if they had a history of seizures, epilepsy or stroke. After providing 
consent, participants completed a short demographics form includ-
ing their age, handedness and gender. Participants were then given 
instructions on how to perform the task, which stressed the importance 
of both speed and accuracy. Participants were also informed that 
if they were faster and more accurate than the average of the other 
participants in a given sample of participants, they would receive a 
bonus payment. Across all experiments 130 participants (62 female, 
five left-handed, mean age of 29 years and range 18–40) participated in 
the study (each participant only took part in a single study). Data from 
17 participants were excluded from analysis due to low accuracy (less 
than 70%) or consistently slow RTs such that too few trials met inclu-
sion criteria (less than 50% of total possible trials in any reversal × delay 
condition remaining after RT exclusion, see below).

dDMS task
The background was always white, and all stimuli were black and pre-
sented in the centre of the screen. First, a 150 ms duration fixation 
cross was presented, which indicated the start of a new trial. Following 
a 500–1,000 ms interval, a 150 ms duration visual cue was presented, 
which could either be a black circle or black star, matched for area, with 
50% probability. After the delay epoch (below), a 150 ms duration probe 
stimulus was presented that was either the same or remaining stimulus 
with 50% probability. Participants were instructed to press one of two 
buttons on their keyboards, F or J, to indicate whether they thought 
the cue and probe stimuli matched or did not match (counterbalanced 
across participants). The response period was unlimited in duration, 
and the task did not proceed unless a response was given. All incorrect 
responses were followed by negative feedback (a ‘thumbs down’ icon). 
After each response there was a 1,500–2,000 ms intertrial interval.

The critical manipulation was the delay time, that is, the interval 
between the cue (first stimulus) offset and probe (second stimulus) 
onset. When appearing as a cue, one stimulus (for example the circle) 
was followed by a delay of 1 s on 80% (‘standard’) of the trials, and a 
delay of 2.2 s on the remaining 20% (‘reverse’) of the trials. The other 
stimulus (for example, the star) was followed by a 2.2 s delay on 80% 
(‘standard’) of the trials and a 1 s delay on 20% (‘reverse’) of the trials. 
The mapping between the cue stimulus and the likely memory delay 
was counterbalanced across participants.

Five blocks of 80 trials (64 standard, 16 reverse) were presented for 
a total of 400 trials. In each block, trial order was pseudorandomized 
with the following constraints: (1) the first eight trials of each block 
were always standard trials. (2) A reverse trial could not immediately 
follow another reverse trial. Participants were given eight standard 
practice trials with each cue before the first block. Participants were 
given the opportunity to take short breaks between each block. Each 
block took approximately 8 min to complete, and participants fin-
ished the experiment in 45 min on average. A replication study of the 
dDMS task (Supplementary Fig. 1e–j) was preregistered (https://doi.
org/10.17605/OSF.IO/XK3JH).

ISA task
The ISA task was identical in stimulus structure to the dDMS task, but 
rather than being instructed to compare the cue and probe stimuli 
to each other, participants were instructed to make a decision on the 
basis of the probe stimulus and the delay: for example, press the F key 
in response to a short delay followed by a circle or a long delay followed 
by a star (short–circle or long–star), and press the J key in response 

to a long delay followed by a circle or a short delay followed by a star 
(long–circle or short–star). The mapping between the response button 
and the pair of opposing interval-probe combinations was counterbal-
anced across participants. Participants were instructed that for any 
given trial the cue stimulus could be either a circle or star and that the 
cue stimulus was irrelevant to the task beyond indicating the onset of 
the delay interval. But as in the dDMS task, the cue stimulus identity 
(circle or star) predicted the delay interval on 80% of the trials (standard 
trials), while for the remaining 20% of the trials, the cue stimulus was 
followed by the other delay interval (reverse trials).

Analysis and statistics
Trials with RTs outside of the range of 100–3,000 ms were discarded. 
Three measures of performance were used: accuracy (percentage cor-
rect), RT and the inverse efficiency score. For each condition for every 
participant, trials with RT values larger than four standard deviations 
away from the mean were discarded. RTs were calculated as the median 
of the remaining trials for that condition. The inverse efficiency score, 
a combined measure of speed and accuracy in which larger values 
indicate worse performance, was calculated as the median RT divided 
by accuracy.

Statistics were based on within-participants 2 × 2 ANOVAs with a 
reversal (standard versus reversal trials; for example, circle → short/
star → long versus circle → long/star → short) factor and the actual 
delays (short versus long) factor.

Unless otherwise specified all statistical analyses relied on 
two-sided tests.

RNN model
RNN architecture and training. RNNs were composed of 256 units, an 
input layer and an output layer composed of one (WM and ISA tasks) 
or two (T + WM task) units. The dynamics of the default RNN were 
described by:

τdr
dt

= −r + [WRNNr +WInu + bRNN + φ]+

where r is the the firing rate vector of the recurrent units, u is the input 
vector and bRNN is the bias of the units. Each unit received private  
Gaussian noise φ = √2τσRNNN (0, 1), where N(0,1) represents a normal 
distribution with a mean of 0 and a standard deviation of 1. The thresh-
old linear function []+ represents a ReLU function in which all negative 
values become 0.

The input layer was composed of 32 inputs representing a range of 
0 to 2π. Stimuli A and B were represented by non-overlapping patterns 
of activity centred at 1 and 5.2 (corresponding to centre activation at 
units 6 and 28). These patterns can be interpreted as retinotopic or 
tonotopic activation of two visual or auditory stimuli. The output units 
(z) were non-linear readouts of the recurrent network:

zzz = sigmoid (WOutr + bOut)

Dale’s law was implemented by assigning 80% (205) of the units as 
excitatory and 20% (51) as inhibitory. After initializing WRNN to a random 
orthogonal matrix (gain of 0.5), the absolute weights of all presynaptic 
excitatory units were multiplied by 1.0 and those from the inhibitory 
units were multiplied by 4.0 (to maintain an approximate excitatory 
and inhibitory balance). During training all weights were clipped at 
zero during any zero-crossings. The weight matrix was multiplied by a 
diagonal matrix composed of 1 s and −1 s, corresponding to the excita-
tory and inhibitory units, respectively.

To enhance our ability to dissect the circuit mechanisms under-
lying the observed dynamics, the recurrent biases were set to zero, 
and neither the recurrent biases or the WIn matrix was trained. This 
approach is consistent with the notion that synapses higher in the 

http://www.nature.com/nathumbehav
https://doi.org/10.17605/OSF.IO/XK3JH
https://doi.org/10.17605/OSF.IO/XK3JH


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01592-y

processing hierarchy are more plastic. Additionally, this approach 
ensured that the differential RNN dynamics across all networks could 
be attributed to WRNN, facilitating the synaptic structure analyses  
(Fig. 4). Thus, only the WRNN, WOut and bOut parameters were trained.

During training a first-order Euler approximation was used 
with a τ of 50 ms and a dt of 10 ms, resulting in a discretization factor 
α = dt/τ = 0.2. RNNs were trained with ADAM and a batch size of 32. The 
loss function to be minimized was:

ℒ = ⟨(mi,t ∗ (zi,t − ẑi,t))
2⟩

i,t

where ℒ represents the time and output unit averaged loss function 
and the star represents element-wise product. zi,t and ẑi,t represent the 
target and actual activity, respectively, of an output unit i at time t. m 
represents a cost mask that differentially weights the contribution of 
output units to the loss function during different points in time. The 
motor output target (z1,t) was a step function from 0 to 0.8 at probe 
onset of the non-match trials, and when present, the temporal expecta-
tion output (z2,t) was a linear ‘half’ ramp from 0 to 0.8 starting at 50% 
of the delay period until onset of the probe. For the motor output m1,t 
was equal to two from 250 ms before onset of the cue stimulus until 
the onset of the probe stimulus and five during the probe until 500 ms 
after probe offset (to place a higher weight on the match or non-match 
response), with a grace period 5dt (m1,t = 0) during the onset of the 
probe. For the temporal expectation output, the cost mask was always 
m2,t = 1. As with the psychophysics experiments, RNNs were trained on 
both the standard and reverse trials, but reversal trials comprised 10% 
of the total rather than 20%, to accelerate convergence (note that for 
the T + WM task the reverse trials impose a ‘moving target’ for the tim-
ing output pattern). Training was stopped when the loss reached 0.0015 
for T + WM and 0.001 for the WM and ISA tasks, or reached a total 
125,500 update epochs. Different stop criteria were used for T + WM 
task because the reverse trials make it impossible to fully converge to 
the same loss values. RNNs were implemented in TensorFlow and based 
on Yang et al.40.

During training the onset time of the first stimuli was uniformly 
varied between 250 and 1,000 ms on each trial. The standard delays 
were 1.0 (short) and 2.2 s (long). During training these delays were 
jittered by ±10%, approximately corresponding to psychophysically 
observed Weber fractions. It is important to note that the presence of 
‘temporal noise’ in the form of onset and delay time variability, con-
tributes to the robustness of the solution, and that ‘spurious’ solutions 
that do not generalize to different onset times or delays can emerge in 
the absence of this ‘temporal noise’.

Dimensionality. To estimate the dimensionality of the dynamics during 
the delay periods we first concatenated the average activity of all units 
during the short and long delays for a final matrix of 256 units × 320 
time bins. Concatenation is important to distinguish regimes in which 
both cues elicit similar sequences (for example, in the ISA task) versus 
cases in which both cues elicit distinct sequences (for example, in the 
T + WM task). Effective dimensionality was defined as the minimum 
number of principal components that captured at least 95% of the 
variance of the activity across time bins14.

SVM decoding. For the decoding of bue and elapsed time, the mean 
activity of each unit within 100 ms bin was used, comprising a total of 32 
(10 and 22 bins for the short and long delays, respectively) input vectors 
of size 256 per trial. Thus target values represented bins 1:10 for cue A 
and bins 1:22 for cue B). SVMs were trained (SVMTRAIN from LIBSVM 
1.2 for MATLAB) using multiclass classification, a linear kernel, and a 
cost parameter of 100. The short and long delay data sets consisted of 
25 delay epoch trials of the AA and BA conditions, and testing relied 
on leave-one-out cross-validation across the 25 possible replications. 

Performance was quantified as the correlation between the predicted 
and target bins, as well as the MSE.

Mutual information. To estimate the per unit mutual information 
about the cue (that is, whether the first stimulus was A or B), the activity 
was averaged from 100 ms after the end of the cue (to allow for decay 
of stimulus-evoked activity) to the end of the delay period for each 
trial. Activity levels were categorically binned into ten bins from 0 to 
maximal activity for each unit. Mutual information was calculated 
across 25 trials of cues A and B. To calculate mutual information across 
time, activity was averaged across ten evenly spaced time bins across 
the delay period, and again activity was categorically binned into ten 
activity levels. Maximal mutual information was 1 and 3.32 bits for the 
cue and time mutual information estimates, respectively.

Schur decomposition. Similar to previous studies13,66, we performed 
Schur decomposition analyses on the learned recurrent weight matri-
ces in the WM, T + WM and ISA tasks. The schur decomposition function 
in MATLAB was used to obtain an upper triangular matrix, representing 
the interaction of Schur modes. Then we plotted the number of Schur 
modes with least one interaction of magnitude greater than a range of 
threshold values (from 0 to 4).

Perturbation experiments. To test the robustness of RNN dynamics 
to perturbations, we introduced activity to an input unit during the 
delay epoch to mimic a distraction produced by an irrelevant stimulus. 
Specifically, the perturbation input was at π for the input topological 
position (corresponding to centre activation at the 17th input) with 
random weights to the recurrent units similar to the standard inputs. 
Unless otherwise specified, the perturbation was introduced with the 
amplitude of 0.25, 500 ms after the onset of the first stimulus for a total 
duration of 50 ms. Control and perturbed trajectories were obtained 
using the same noise matrices across units and time (‘frozen’ noise).

Statistics. Comparison across RNN tasks relied on the non-parametric 
Wilcoxon rank sum test (ranksum command in MATLAB). All statistical 
tests are two-sided.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Human data and code for analysis are available at https://osf.io/
HXSUG/.

Code availability
Code for the RNN simulations and analysis is available at https://github.
com/BuonoLab/Timing-WM_RNN_2022.
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Data analysis Unless otherwise specified, data were analyzed by using custom code of Matlab (R2022a). For SVM decoding of timing information, 
SVMTRAIN from LIBSVM 1.2 for Matlab was used.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Human data and code for analysis is available at https://osf.io/HXSUG/ 



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Because we were not interested in the effects of sex or gender, no analyses were planned a priori based on sex or gender. 
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gender as being Male, Female, or Other. Post hoc analyses indicated that there were no significant effects of gender. 

Population characteristics Participants were aged 18-40 (mean = 29). There were 62 female, 65 male, and 3 other gender participants. There were 5 
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Recruitment Participants were recruited using the online Prolific platform (https://www.prolific.co/). Participants on the Prolific platform 
were only eligible for the study if they were between the ages of 18 and 40, residing in the United States, fluent in English, 
and had never participated in an online study from our laboratory on Prolific.

Ethics oversight The study was approved by the Institutional Review Board of UCLA.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
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Study description Visual working memory  psychophysics studies were performed online using a within group experimental design. Cue-delay-
associations and response keys were counterbalanced.

Research sample Participants were Prolific users (https://www.prolific.co/) aged 18-40 (mean = 29). There were 62 female, 65 male, and 3 "other 
gender" participants. There were 5 left-handed participants and 125 right-handed participants. This sample is representative. 
Eligibility criteria listed in "Recruitment" were chosen to sample from among adults in a single nationality that could understand the 
study instructions and had no prior bias.

Sampling strategy Sampling was random. The approximate desired sample size was pre-determined using G*Power by estimating the effect size (0.45) 
and setting the target power (0.9) and alpha (0.05).

Data collection Behavioral experiments were conducted online using the Gorilla platform, which records the buttons pressed and the timing of the 
button presses in order to determine reaction time with respect to stimuli displayed in the browser. Before beginning the task, 
participants read and signed an informed consent form that asked them to: 1) complete the study in a quiet place without 
distractions, 2) maximize their browser window and not adjust it during the experiment, 3) have normal or corrected-to-normal 
vision (i.e. to wear glasses or contacts if prescribed), and 4) not participate if they had a history of seizures, epilepsy, or stroke. 
Participants were randomly and equally assigned to one of four counter-balance conditions, but researchers were blind to this 
assignment during data collection. Subjects were instructed to perform the experiments in a quiet environment, but we did not track 
the environment the subjects did the experiment in.

Timing Data collection began on June 18, 2021 and completed on January 25, 2022.

Data exclusions As described in the manuscript data from seventeen participants were excluded from analysis due to low accuracy (less than 70%) or 
consistently slow reaction time (RT) such that too few trials met inclusion criteria (less than 50% of possible trials in any Reversal x 
Delay condition remaining after RT exclusion).

Non-participation No participants dropped out or declined participation.

Randomization The study had no between-subjects experimental factors; however, participants were randomly and equally assigned to one of four 
counter-balance conditions.
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