See discussions, stats, and author profiles for this publication at:

A learning rule based on empirically-derived
activity-dependent neuromodulation supports
operant conditioning in a small network

Article /7 Neural Networks - September 1992

DOI: 10.1016/S0893-6080(05)80140-6 - Source: DBLP
CITATIONS READS
20 9

4 authors, including:

9 University of Texas Health Science Center at ...

121 PUBLICATIONS 3,841 CITATIONS

SEE PROFILE

Available from: Douglas Baxter
Retrieved on: 08 August 2016


https://www.researchgate.net/publication/222463823_A_learning_rule_based_on_empirically-derived_activity-dependent_neuromodulation_supports_operant_conditioning_in_a_small_network?enrichId=rgreq-ae8d92e3bf2a13f5afffd57eb31a92d4-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQ2MzgyMztBUzozNjg4NjgzNjgzNzE3MTJAMTQ2NDk1NjQ4MDE1MQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/222463823_A_learning_rule_based_on_empirically-derived_activity-dependent_neuromodulation_supports_operant_conditioning_in_a_small_network?enrichId=rgreq-ae8d92e3bf2a13f5afffd57eb31a92d4-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQ2MzgyMztBUzozNjg4NjgzNjgzNzE3MTJAMTQ2NDk1NjQ4MDE1MQ%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-ae8d92e3bf2a13f5afffd57eb31a92d4-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQ2MzgyMztBUzozNjg4NjgzNjgzNzE3MTJAMTQ2NDk1NjQ4MDE1MQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Douglas_Baxter2?enrichId=rgreq-ae8d92e3bf2a13f5afffd57eb31a92d4-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQ2MzgyMztBUzozNjg4NjgzNjgzNzE3MTJAMTQ2NDk1NjQ4MDE1MQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Douglas_Baxter2?enrichId=rgreq-ae8d92e3bf2a13f5afffd57eb31a92d4-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQ2MzgyMztBUzozNjg4NjgzNjgzNzE3MTJAMTQ2NDk1NjQ4MDE1MQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Texas_Health_Science_Center_at_Houston?enrichId=rgreq-ae8d92e3bf2a13f5afffd57eb31a92d4-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQ2MzgyMztBUzozNjg4NjgzNjgzNzE3MTJAMTQ2NDk1NjQ4MDE1MQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Douglas_Baxter2?enrichId=rgreq-ae8d92e3bf2a13f5afffd57eb31a92d4-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQ2MzgyMztBUzozNjg4NjgzNjgzNzE3MTJAMTQ2NDk1NjQ4MDE1MQ%3D%3D&el=1_x_7

Neural Networks, Vol. S, pp. 789-803, 1992
Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

0893-6080/92 $5.00 + .00
Copyright © 1992 Pergamon Press Ltd.

A Learning Rule Based on Empirically-Derived
Activity-Dependent Neuromodulation Supports
Operant Conditioning in a Small Network

JENNIFER L. RAYMOND, DOUGLAS A. BAXTER, DEAN V. BUONOMANO,
AND JOHN H. BYRNE

University of Texas Medical School at Houston

(Received 29 July 1991; revised and accepted 16 January 1992)

Abstract—Activity-dependent neuromodulation has been proposed as a cellular mechanism for classical conditioning
in Aplysia. Previously, we developed a mathematical model of an Aplysia sensory neuron that reflects the subcellular
processes underlying this form of associative plasticity. This model could simulate features of nonassociative learning
and classical conditioning. In the present study, we tested the hypothesis that activity-dependent neuromodulation
could also support operant conditioning. We used a network of six neurons, two of which were adaptive elements
with an associative learning rule based on activity-dependent neuromodulation. A two-neuron central pattern generator
(CPG) drove the network between two output states. We simulated operant conditioning by delivering reinforcement
when one selected output occurred. The network exhibited several features of operant conditioning, including extinction
and sensitivity to reversed contingencies, the magnitude of reinforcement, the delay of reinforcement, and contingency.

Keywords— Aplysia, Central pattern generator, Classical conditioning, Learning, Models, Neural networks,

Operant conditioning, Plasticity.

1. INTRODUCTION

One of the fundamental problems in neurobiology is
to understand events occurring within individual neu-
rons and within networks that contribute to learning
and memory. An equally important and related prob-
lem is to determine the mechanistic relationships be-
tween different forms of learning. For instance, two
forms of associative learning that have been studied
extensively are classical conditioning and operant (in-
strumental ) conditioning. In classical conditioning, a
conditioned stimulus (CS; e.g., a bell ), serves as a pre-
dictor or signal of the unconditioned stimulus (US; e.g.,
food), or reinforcement, and thus comes to produce a
conditioned response (CR; e.g., salivation) (Pavlov,
1927). In operant conditioning, delivery of the rein-
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forcer (reward or punishment) is contingent on the
performance of a particular behavior (the operant) by
the animal, and this contingency leads to a change in
the frequency of the operant (a decrease in the fre-
quency of a punished behavior or an increase in the
frequency of a rewarded behavior) (Skinner, 1938;
Thorndike, 1911). Although these two forms of learn-
ing have been distinguished in terms of the paradigms
that govern the delivery of reinforcement during train-
ing, it is not known whether the cellular processes un-
derlying classical conditioning and operant conditioning
are fundamentally different or whether these forms of
learning may share a common underlying mechanism.

Previous theoretical and empirical work has sug-
gested that at least aspects of classical conditioning and
operant conditioning may share a single learning pro-
cess (Grossberg, 1971; Rescorla, 1987; Tully & Quinn,
1985). The marine mollusc Aplysia exhibits both types
of associative learning in response systems that are well
suited for cellular as well as computational analysis.
Therefore, by combining empirical and computational
approaches in this system, we hope to gain insight to
the mechanisms involved in and the relationship be-
tween these two forms of associative learning. Consid-
erable progress has been made in understanding the
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neural basis of classical conditioning in Aplysia by tak-
ing advantage of the simple neural circuitry of two de-
fensive withdrawal reflexes, tail-siphon withdrawal and
siphon-gill withdrawal. Using a neural analogue of
classical conditioning of these reflexes, a putative cel-
lular mechanism of classical conditioning called activ-
ity-dependent neuromodulation has been described. In
the neural analogue, activation of a sensory neuron
(analogous to the CS) in contiguity with application of
a reinforcing stimulus (e.g., stimulation of a nerve,
analogous to the US) results in an enhancement of the
postsynaptic response (analogous to the CR) that is
recorded in a follower neuron (Buonomano & Byrne,
1990; Hawkins, Abrams, Carew, & Kandel, 1983; Wal-
ters & Byrne, 1983). The cellular mechanism for ac-
tivity-dependent neuromodulation appears to emerge
from the synergistic action of two intracellular messen-
ger systems, cyclic AMP (cAMP) and Ca?* (for reviews,
see Abrams & Kandel, 1988; Byrne, 1985, 1987). The
reinforcing stimulus acts via the release of facilitatory
transmitter from a facilitatory neuron to increase the
intracellular levels of CAMP in the sensory neurons,
and, in turn, cAMP produces an enhancement of the
synaptic strength of the sensory neurons, expressed
when a subsequent test stimulus activates the sensory
neuron. The activity dependence (and the associativity)
of this form of plasticity results from the ability of Ca?*,
which enters a sensory neuron during activity in that
neuron, to enhance cAMP production, thereby ampli-
fying the enhancement of synaptic strength in that
neuron.

One study of operant conditioning in Aplysia has
focused on the conditioning of a behavior known as
head-waving, during which the animal sweeps its head
from side to side to probe its environment (Cook &
Carew, 1986, 1989a, 1989b, 1989¢c). During operant
conditioning of this behavior, a reinforcing stimulus is
presented whenever the animal waves its head to one
side. Following operant conditioning, there is a signif-
icant decrease in the amount of time the animals spend
head-waving to the punished side compared to their
baseline performance (Cook & Carew, 1986). The
analysis of conditioning of this behavior is presently
being extended to the cellular level (Cook & Carew,
1989a, 1989b, 1989c). However, the location and form
of the synaptic plasticity underlying operant condition-
ing of head-waving are not yet known. Therefore, we
have taken a theoretical approach to the question of
whether, at the neuronal level, classical conditioning
and operant conditioning must involve different mech-
anisms or whether they could, in fact, result from a
single associative plasticity rule. Specifically, we have
constructed a computational model containing six
neuron-like elements. Two of these elements have
properties that reflect activity-dependent neuromodu-
lation, the cellular mechanism that is believed to un-
derlie classical conditioning in Aplysia. Previously, the
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activity-dependent neuromodulation learning rule was
mathematically formalized by incorporating equations
that describe the biochemical and biophysical mecha-
nisms contributing to this form of plasticity into a de-
tailed model of Aplysia sensory neurons (Gingrich &
Byrne, 1985, 1987; see Appendix ). This model has been
able to simulate the neural analogues of several forms
of nonassociative learning and of classical conditioning.
Furthermore, when elements with this activity-depen-
dent neuromodulation learning rule are incorporated
into relatively simple circuits, these networks can sim-
ulate some higher-order features of classical condition-
ing, such as second-order conditioning and blocking
(Baxter et al., 1991; Buonomano et al., 1990; Gluck &
Thompson, 1987; Hawkins, 1989; Hawkins & Kandel,
1984). In the present study, we examine whether the
incorporation of elements with the activity-dependent
neuromodulation learning rule into a simple circuit
can endow that circuit with the ability to simulate fea-
tures of operant conditioning. Preliminary reports of
these results have been presented (Baxter, Raymond,
Buonomano, & Byrne, 1989; Baxter et al., 1991; Byrne,
Baxter, Buonomano, & Raymond, 1991).

2. NETWORK ARCHITECTURE

Since the neural circuitry for head-waving and its mod-
ulation by operant conditioning are not known, we have
constructed a hypothetical neural network that pro-
duces an oscillatory pattern similar to head-waving and
whose properties are consistent with what is known
about invertebrate neurons and networks (Figure 1).
The two adaptive elements (AEs) are derived from the
single-cell model of Gingrich and Byrne (1985, 1987).
The AEs are the only elements of the network whose
synaptic strengths can be associatively modified. They
are driven by a central pattern generator (CPG), con-
sisting of two spontaneously active and mutually in-
hibitory neurons (PGs), each of which drives one of
the AEs in a spike-to-spike manner. Each AE in turn
provides graded excitatory input to a motor neuron
(MN), which transforms the input into an activation
level. The MNs function as the output of the network,
and they also send connections back to the PGs that
influence the duration of their bursts. Reinforcement,
like the US in simulations of classical conditioning, is
modeled as the release of facilitatory transmitter, which
causes synthesis of CAMP in the AEs. The reinforce-
ment is diffuse (i.e., it does not selectively affect one or
another AE but activates the synthesis of cAMP in both
AEs simultaneously). Equations for the AEs and the
values of all constants are listed in the Appendix.

2.1. Central Pattern Generator (CPG)

The central pattern generator drives the patterned ac-
tivity in the network, which serves as the target of op-
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FIGURE 1. Network for simulation of operant conditioning. Two
single-cell models incorporating the activity-dependent neu-
romodulation learning rule have been incorporated into an os-
cillatory circuit with two possible outputs, A and B. We refer to
them as adaptive elements (AEs), since they are the only ele-
ments of the network whose synaptic strengths can be asso-
ciatively modified. The AEs are driven by a central pattern gen-
erator (CPG) that consists of two spontaneously active and
mutually inhibitory neurons (PGs). Each PG drives one of the
AEs in a spike-to-spike manner. Each AE provides graded ex-
citatory input to a motor neuron (MN), which transforms the
input into an activation level. The MNs function as the output
elements of the network, and they also send connections back
to the CPG, which influence the duration of bursts in the PGs.
Reinforcement, like the US in simulations of classical condi-
tioning, causes the release of facilitatory transmitter, which
causes the synthesis of cAMP in both AEs.

erant training. Its two identical, spontaneously active,
and mutually inhibitory cells (PGs) burst in alternation.
These bursts are not constant in duration, but are
modulated by feedback from the MNs. Since the output
of the PGs is not fixed, the PGs can be said to comprise
an “adaptive” pattern generator.

The equations and parameters that describe the CPG
have been chosen so that it represents a biologically
plausible circuit for biphasic oscillation in an inverte-
brate nervous system. In particular, we have developed
a CPG in which (a) the spike duration and frequency
in the PGs is reasonable for an Aplysia bursting neuron;
(b) spike after-hyperpolarizations and inhibitory syn-
aptic potentials fall within typical ranges for Aplysia
neurons in terms of amplitude and time constants; and
(c) the bursts of spikes in the PGs are similar in du-
ration to the head-waves in Aplysia.

2.1.1. Elements of the CPG ( PGs). Each PG is modeled
as a membrane capacitance (C,,) in parallel with four
ionic conductances, each connected serially to a battery
representing the equilibrium potential for the permeant
ion. The equivalent electrical circuit is shown in Figure
2. The current through these conductances controls the
membrane potential (V,,,) of the PGs at and below the
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threshold for an action potential (—35 mV) according
to the relation:

de/dt = _(IPG,Ca + IPG,Ca,V + IPG,altp + IPG,syn)/Cm‘ (l)

When the solution of the above equation yields a value
of V,, equal to or more positive than —35 mV in one
of the PGs, an action potential is simulated by a 3 msec
pulse depolarization to +35 mV. The PGs have a 20
msec refractory period after each action potential, dur-
ing which another action potential cannot be generated.

IpG.cq is a tonic depolarizing Ca?* current that un-
derlies spontaneous spike activity in the PGs. This cur-
rent does not exhibit voltage-dependent activation or
inactivation, but it is regulated by intracellular Ca?*.
IpG cq is described by:

Ipcca = Grca* Arc,ca* Vim — Eca), (2)
where Gpg ¢, is the maximum conductance, Ec, is the
equilibrium potential for Ca?*, and 4pg ¢, is a decreas-
ing sigmoidal function of the intracellular Ca2* con-
centration ( Cpg ¢, See eqn (13)),

Apgca =1 —1/(1 +exp(21.0 — Cpg,c0)). (3)
Since Ipg,c, contributes directly to the accumulation
of Ca?* (see eqn (13)), it contributes to its own in-
activation. Inactivation of Ipg ¢, in turn causes an in-
crease in the interspike interval and ultimately termi-
nation of the burst (see below). Such Ca?*-dependent
inactivation of a Ca2* current has been described in
neurons of Aplysia (Eckert & Tillotson, 1981; Kramer
& Zucker, 1985) and other invertebrates (e.g., Helix,
Oyama, Akaike, & Nishi, 1986). Furthermore, CPGs
containing mutually inhibitory cells have been de-
scribed in a number of invertebrates (Calabrese & Pe-
terson, 1983; Getting, 1981, 1989; Selverston, Miller,
& Wadepuhl, 1983).
A voltage-dependent K* current, Ipg 4np, is TESpON-
sible for the spike after-hyperpolarization in the PGs.

out
Te m 9reca 9recav 9pg.anp ecsyn
Eca FK
IN

FIGURE 2. Equivalent circuit for PGs. The four membrane con-
ductances of the PGs are modeled as parallel conductances,
each in series with a battery that represents the equilibrium
potential for the ion that carries the current. The conductances
are also in paraliel with a membrane capacitance.
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Since it tends to oppose Ipgc,, it also contributes to
the interspike interval. The equation describing Ipg, 44p
is

IrGanp = Gro.anp* Apcanp* (Vm — Ex), (4)

where Gpg a1, is the maximum conductance, Apg.anp
represents voltage-dependent activation, and E is the
equilibrium potential for K*. During a spike in a neu-
ron of the pattern generator,

APG,ahp =1- cxp('__tl/TPG,ahp)s (5)

in that neuron, where ¢, is the time from the beginning
of the pulse depolarization (spike) and Tpg 4, is the
time constant for voltage-dependent activation. Between
spikes

APG,ahp =4 ’PG,ahp ° CXP( _t2/ TPG,ahp)’ (6)

where A pg.any 18 the value of Apg 44, at the end of the
last spike and ¢, is the time since the end of that spike.

A second Ca?* current, Ip c, 1, is a voltage-depen-
dent Ca?* current. Its voltage-dependent activation
(Apg.cav) 1s described by equations similar to eqns (5
and 6). The maximum conductance (Gpgcor) Of
Ipg.cq v is larger than that of the voltage-independent
current Ipg cq. Ipg,cav can therefore contribute signif-
icantly to the accumulation of Ca?* despite its small
time constant ( Tpg cq ), Which causes it to be active
only briefly in response to a spike. This conductance
thus contributes to the termination of a burst through
the Ca?*-dependent inactivation of Ipg c,.

IpG.ca v is also the conductance through which feed-
back from the MNs acts on the CPG. A MN modulates
IpG.cov in the ipsilateral PG, and thus affects the rate
of Ca?* accumulation and ultimately burst duration in
that PG. Activity in a MN (AMN; see below) produces
feedback (F) according to the relation

dF/dt = (AMN — F)/ Tgg, (7)

where Tz is the time constant for feedback. The mod-
ulation (M) of Ipg c, v by this feedback is described by

M=1— (K F), (8)
where Kyp is a constant and 0 < F < 1, so that
IpGcay = G_PG,Ca.V «Apgcay M+ (Vi — Ec,). 9

As AMN increases, F increases, M decreases, and the
amount of Ca?* that accumulates with each spike is
reduced. Thus, it takes longer for Ca* to build up to
the point at which it inactivates Ipg ¢, enough to ter-
minate the burst (see below). The result is that an in-
crease in the strength of an AE-to-MN synapse leads
to an increase in the duration of the bursts of activity
on that side of the network.

The synaptic current, Ipg 5,», is @ potassium current.
It mediates the mutual inhibition between the two cells
of the CPG that causes one cell to be silent while the
other is firing. It is activated in one PG by the occur-
rence of a spike in the other PG; in essence, this current
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results in inhibitory postsynaptic potentials (IPSPs)
from the spiking cell onto the other cell in the CPG.
Thus,

IpG,sym = GPG,syn » Apc,sym* (Vi — Ex), (10)

where Gpg,yn is the maximum conductance, and Apg syn,
the activation of Ipg ;,, in a PG is described by

APG,syn =1- exD(‘tI/TPG.syn)a (1 1)
when the other PG initiates a spike, and by
APG,syn = A;’G,syn * exP( _t21/ TPG,syn)s (12)

when the other PG is not firing a spike. (¢, is the time
from the beginning of a simulated action potential in
the contralateral PG; ¢, is the time since the end of the
last spike in the contralateral PG; and A4 pg gy is the
value of Apg,,» at the end of that spike.)

The PGs also contain equations that describe the
regulation of Ca?*, which includes both passive dif-
fusion (Fpgpc) and active uptake (Fpg yc) from the
cytosol into compartments of the PG that are not mod-
eled. Thus,

dCrg.cal dt = (Ican = Frouc = Franc)/Vee, (13)
where

Fp.oc = Kpo,pc* Cpo,ca (14)

Frouc = Kpguc/(1 + exp(1.0 — Cpecr)),  (15)

Icqn is the combined Ca?* influx through Ipg ¢, and
IpG cavs Ve 1 the volume of the cytosol in the PG, and
Kpi.pc and Kpg yc are the constants for diffusion and
uptake, respectively. Fpg pc and Fpg yc Oppose accu-
mulation of Ca?* while the cell is bursting and cause
a return of the Ca?* concentration towards baseline
when the cell is silent. Hence, Ca?* buffering allows
recovery of Ipg e, from Ca?*-dependent inactivation.

2.1.2. Production of Patterned Network Activity. The
interaction of the four conductances and the Ca2* reg-
ulation system yields a bursting behavior as follows: A
burst of action potentials in one PG (e.g., PG,) pro-
duces summating IPSPs in the contralateral PG. Due
to this inhibition, the contralateral PG is silent (Figure
3). Therefore, there are no IPSPs in the cell that is
firing, Ipg ¢, in that cell is opposed only by Ipg 4y, and
hence it continues to fire. As it fires, however, Ca?*
accumulates within the cell. This accumulation of Ca2*
causes inactivation of Ipgc,. With less depolarizing
current to oppose Ipgqnp, the cell reaches threshold
more slowly with each spike, and the spike frequency
decreases (Figure 4). In the contralateral cell, the fre-
quency of the IPSPs decreases, allowing the membrane
potential of that cell to recover towards threshold and
eventually fire. At this point, both cells are near thresh-
old, but because of Ca?*-dependent inactivation, the
cell that had been firing has a much smaller Ip; ¢, with
which to oppose Ipg a4, and the new hyperpolarizing
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FIGURE 3. Bursting pattern in the CPG. The membrane potential (V) of each PG is controlled by four membrane conductances.
Action potentials are simulated by a 3 msec pulse depolarization to +35 mV that is triggered when V , reaches a threshold of —35
mV. Spikes in PG, activate a synaptic current that produces IPSPs in PGg. As the frequency of the IPSPs declines, PG; reaches

threshold and begins to spike, producing IPSPs in PG,.

contribution of Ipg 4, 50 it is hyperpolarized while the
previously silent cell continues to fire. During the burst
in the contralateral cell, buffering causes the Ca?* level
in the first cell to recover towards baseline, allowing
the recovery of Ipgc, from Ca?*-dependent inactiva-
tion. The first cell can then begin firing when the spike
frequency in the contralateral cell declines.

Thus, oscillation of the CPG depends on the mutual
inhibition of the two PGs and the gradual release from
inhibition that occurs in one PG as the spike frequency
decreases in the other PG as the result of Ca?*-depen-
dent inactivation of a Ca?* conductance. If the inhib-
itory synapses were removed from the circuit, both PGs
would fire continuously at a constant, low frequency
(not shown).

2.2. Adaptive Elements (AEs)

The PGs drive the AEs in a spike-to-spike manner. The
AE:s are the elements of the network into which activity-
dependent neuromodulation was incorporated. The
detailed model of Aplysia sensory neurons (Gingrich
& Byrne, 1985, 1987) contains descriptions of the bio-
chemical and biophysical mechanisms contributing to

this form of plasticity. It includes differential equations
describing two pools of transmitter, a releasable pool
and a storage pool. Vesicles of transmitter are mobilized
from the storage pool to the releasable pool via three
fluxes, one driven by diffusion, one driven by Ca?*,
and one driven by CAMP. There are also equations de-
scribing the regulation of the intracellular levels of Ca?*
and cAMP. Action potentials lead to an influx of Ca?",
Ca?* accumulation, and release of transmitter. Facili-
tatory transmitter leads to the synthesis of CAMP, which
in turn leads to the mobilization of transmitter and an
increase in the duration of action potentials, thus al-
lowing for greater Ca* influx and enhanced transmitter
release. When a burst of action potentials precedes the
application of the facilitatory transmitter, the elevated
level of intracellular Ca2* amplifies the synthesis of
cAMP. The equations and parameters of this model are
detailed in the Appendix.

Among other synaptic phenomena, the original sin-
gle-cell model simulated synaptic depression (Gingrich
& Byrne, 1985). The present simulations required that
the AEs simulate activity-dependent neuromodulation
but not undergo extreme depression during high-fre-
quency spiking lasting tens of seconds. All equations
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FIGURE 4. Behavior of key components of the network before training. Records are from elements on one side of the network
during the baseline period. Pattern Generating Neuron (PG,): A voltage-independent Ca?" current (lpgc.) in each PG provides tonic
depolarizing current that underlies the spontaneous spike activity in the CPG. Its activation level is represented by Apgc.. During
a burst of spikes in PG,, the concentration of Ca?* (Cpsc,) increases, and Ca?*-dependent inactivation of /g c, causes the spike
frequency to decrease. Eventually, PGg (not shown) fires, inhibiting PG, and terminating its burst. During the burst in PGg, PG, is
silent, and Ca?* in PG, is buffered, removing the inactivation of /s c,- Adaptive Elements (AEs): A burst of activity in PG, causes
spiking and the accumulation of Ca?* (C,ec,) in AE,. When the AE is silent, there is no Ca 2+ influx, and the Ca?* that accumulated
during the previous burst is buffered. While the AE is spiking, mobilization of transmitter cannot keep up with release, and depietion
of the releasable poo! of transmitter (Cg) occurs, but when the AE is silent, mobilization replenishes Ck. The slight increase in Cp
towards the end of a burst reflects Ca?*-dependent mobilization of transmitter. Motor Neurons (MNs): Release of transmitter from
an AE causes activation of the ipsilateral MN (AMN), which serves as the output of the network and provides feedback to the

ipsilateral PG.

and parameters for the AEs are therefore as described
in Gingrich and Byrne (1985, 1987; see Appendix also)
for the single-neuron model with the exception of the
following changes, which were made to compensate for
the increased activity levels in the present simulations.
These changes did not alter the ability of the model to
support classical conditioning.

First, the time constant for recovery of the voltage-
dependent Ca?* current (14 c,) from inactivation was
reduced. This allows the AEs to burst for several seconds
while maintaining I, ¢, at a level that supports con-
tinued transmitter release. Second, depletion of trans-
mitter from the releasable pool was reduced by in-
creasing the pool size, by eliminating depletion of the
storage pool, and by reducing the amount of transmitter
released with each spike. The storage pool was main-

tained by removing its dynamics and setting it to a
constant value of 100. The reduction in transmitter
release was accomplished by decreasing the gain con-
stant for release (K) and by reducing the gain constant
for the Ca2* current (K¢). The diffusion constant for
Ca?" (Kp) was reduced, and, finally, a saturation level
or “ceiling’ (Cpmax) Was placed on the intracellular level
of cAMP. All of the new constants are listed in the
Appendix.

During the oscillatory activity of the network, a burst
of activity in one PG (e.g., PG,) causes spiking and
the accumulation of Ca?" in the corresponding AE
(AE,) (Figure 4). When the burst terminates and the
AE is silent, there is no Ca* influx, and the Ca?* that
accumulated during the previous burst is buffered.
Similarly, while the AE is spiking, mobilization of
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transmitter cannot keep up with release, and depletion
of the releasable pool (Cy) occurs, but when the AE is
silent, mobilization replenishes Cx.

2.3. Motor Neurons (MNs)

The response of the MN membrane (Vgpsp) to trans-
mitter ( 7x) released from an AE is approximated as
an RC circuit:

dVipsp/dt = (Tgr — Vipsp)/ Ty. (16)

This membrane response determines the activation
level in the motor neuron (4AMN) according to the sig-
moidal function

AMN = 1/(1 + exp((20.0 — Vipsp)/5.0)).  (17)

AMN, as the output of the motor neurons, can be
thought of as either the instantaneous spike frequency
of the MNs or as the amount of transmitter being re-
leased from the MNs. AMN is the measure of network
behavior. The activation of one MN represents the oc-
currence and strength of one output or behavior while
the activation of the contralateral MN represents the
occurrence and strength of a competing output or be-
havior. Through its feedback connections to the CPG,
AMN also modulates the oscillatory pattern of the net-
work.

2.4. Reinforcement

Reinforcement is mediated by the release of facilitatory
transmitter, which has access to both AEs (Figure 1).
Reinforcement causes the synthesis of cCAMP in each
AE at a rate directly proportional to the concentration
of Ca®* in the AE (C4gc,). Thus, the concentration
of cAMP (C_4p) changes according to the relation

dCeamp!/ dt = (Kpc* Cagca) = Ceamp! Teamp.  (18)

K is the gain constant for the associative synthesis of
cAMP (in the absence of reinforcement, K¢ = 0), and
T.4mp1s the time constant for the decay of CAMP. C_45p
has a ceiling, Cpax.

To allow the modulatory input to act over relatively
long periods of time (tens of seconds ) without increas-
ing CAMP to extremely high levels, we have reduced
the associative gain constant (Kzc) used by Gingrich
and Byrne (1987) and have removed the Ky term,
which represented nonassociative (Ca?*-independent)
plasticity. The synthesis of CAMP leads to the facili-
tation of the synaptic connections between the AEs and
their follower neurons, the MNs.

3. SIMULATIONS OF OPERANT
CONDITIONING

3.1. Contingent Reinforcement Paradigm

The basic training paradigm consisted of a 400 sec
baseline phase and one or more 40 min training phases.
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During the baseline phase no reinforcement was deliv-
ered. During contingent training, activity in one of the
MNs was chosen as the reinforced output, and rein-
forcement was delivered (cAMP synthesis was acti-
vated ) whenever activity in that MN exceeded activity
in the nonreinforced output for at least 0.5 sec.

The result of this procedure is shown in the records
of activity in the MNs (Figure 5a). When the delivery
of reinforcement was contingent on the occurrence of
activity in MN,, there was an increase in the duration
of each burst in MN,. Although the duration of bursts
in MNjp also increased, the increase in MN, was much
greater, and therefore the network spent relatively more
time producing the reinforced output, Qutput A, as a
result of contingent training. This result is displayed
graphically in Figure Sc. Conditioning is plotted as the
difference between the time spent producing Output A
and the time spent producing Output B during each
cycle of the network, where a cycle is defined as one
complete oscillation of the network through an occur-
rence of each output. During contingent training, a
progressively greater amount of time within each cycle
was devoted to producing the operant response, Out-
put A.

These results depend upon the interaction of the
Ca?* and cCAMP pathways in the AEs (Figure 6). Dur-
ing contingent training, reinforcement coincided with
activity (and therefore a high concentration of Ca?*)
in the AE on the reinforced side of the network (AE, ).
Because of the mutual inhibition of the cells of the
pattern generator, reinforcement occurred during a
time when AEj was inactive and contained only a small
amount of residual Ca?*, which had accumulated dur-
ing a previous burst and which had not yet been buf-
fered. Since the amount of cAMP (and hence facili-
tation ) that is produced in response to the presence of
reinforcement is proportional to the intracellular Ca?*
concentration, the reinforcement caused cAMP to be
produced in both AEs, but caused much more cAMP
to be produced in AE,. Therefore, the reinforcement
produced facilitation of both AE-to-MN synapses, but
the AE,-to-MN, synapse was facilitated to a much
greater degree. The releasable pool of transmitter (Cg)
became much larger and action potentials became
much broader in AE, than in the baseline condition.
Therefore, the same activity in PG, resulted in more
transmitter release from AE, and stronger activation
of MN,. This meant greater feedback to PG,, and
hence longer bursts of activity on the reinforced side of
the network than in the baseline condition. The non-
reinforced side of the network, on the other hand, did
not manifest changes of such magnitude. With contin-
ued training, CAMP in AE, reached its saturation level
{not shown). No further enhancement of the AE,-to-
MN, synapse occurred, and the duration of bursts of
activity on that side of the network stabilized at a du-
ration approximately six times as long as the duration
of a burst during baseline.
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FIGURE 5. Network output during simulations of operant conditioning. (a) Contingent reinforcement. Training begins at the arrow.
In this case, Output A is chosen as the reinforced behavior, and reinforcement is delivered whenever MN, is active. During training,
there is an increase in both the amplitude and the duration of bursts of activity in MN,. Although activity in MN; also increases, the
increase in MN, is much greater; thus, the network spends relatively more time producing Output A. (b) Random reinforcement.
There is an increase in the amplitude and duration of bursts of activity in both MNs; however, the network does not spend more
time producing Output A than it spends producing Output B. (¢) Results from the simulations in A and B are summarized as the
difference between the time spent producing Output A and the time spent producing Output B for each behavioral cycle, where a
cycle is one complete oscillation of the network through a burst of activity in each MN.

With the behavioral paradigm that has been used
for operant conditioning of head-waving, the reinforced
behavior does not completely displace the nonrein-
forced behavior (Cook & Carew, 1986). Both behaviors
continue after training, but the relative amount of time

spent producing each behavior changes. Similarly, in
the simulations, both outputs continued after training.
On the nonreinforced side of the network, the duration
of bursts increased due to the small amount of cAMP
in AEg, but the increase was small relative to the rein-
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FIGURE 6. Behavior of key components of the network during simulations of operant conditioning. When reinforcement is contingent
on the production of Output A, reinforcement coincides with activity (and therefore a high concentration of Ca?")in AE, and inactivity
(low Ca?*) in AEg. Therefore, reinforcement causes more cAMP to be produced in AE,. Consequently, Cj is larger and spikes are
broader in AE,. Therefore, activity in PG, results in more transmitter release from AE,, greater activation of MN,, greater feedback
to PG,, and hence longer bursts of activity on the reinforced side of the network.

forced side. The bursts on the nonreinforced side con-
tinued to increase until they reached a duration at
which the amount of cAMP that decayed during a burst
on side B was as great as the amount that accumulated
in response to the presence of reinforcement during a
burst on side A. Thus, during training, the amount of
conditioning, or the increase in the proportion of time
spent producing the operant response, Output A, in-
creased and then stabilized at a new, conditioned level.

3.2. Random Reinforcement Paradigm

In order to demonstrate that the conditioning observed
during training depended on the contingency between
the occurrence of the operant behavior and the delivery
of reinforcement, we introduced a random reinforce-
ment procedure whereby reinforcement was delivered
during the training period, but its delivery was not spe-
cifically correlated with the behavior of the network
(Figure 5b). In these simulations, the number of re-
inforcement periods was the same as the number during
contingent training, and the duration of each period

corresponded to the duration of a period of reinforce-
ment in the contingent simulations. Only the timing of
the reinforcements was varied randomly. The results
of this procedure are compared with those of contingent
training in Figure 5c. In contrast to contingent training,
when reinforcement was presented randomly during
training, there was no significant conditioning of the
network. During a random reinforcement simulation,
reinforcement was sometimes delivered while AE, was
active and sometimes delivered while AEg was active.
Therefore, a similar amount of cAMP was produced
in both AEs, both AE-to-MN connections were facil-
itated to a comparable degree, feedback to both neurons
of the central pattern generator increased, and bursts
on both sides of the network increased in duration.
However, since, on average, both sides were equally fa-
cilitated, there was no change in the relative amount
of time the network spent producing either output, A
or B (i.e., there was no conditioning). Thus, the network
was able to simulate the defining feature of operant
conditioning, a change in the amount of time spent
producing an output that depended upon the contin-
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gency between the occurrence of that output and the
delivery of reinforcement. Operant conditioning ap-
peared to be a robust feature of the network. A limited
examination of the parameter space, including variation
of G-PG.Ca,Vs Gp(;_syn, TFBa and KPG,UCa indicated that
while the patterned activity of the network varied over
a wide range, operant conditioning was preserved as
long as the oscillatory pattern remained.

3.3. Extinction and Reversal of the Contingency

The ability of the network to simulate other features
of operant conditioning was also examined. One feature
of operant conditioning is that it extinguishes or decays
if reinforcement of the operant behavior is discontinued.
Accordingly, in our model, when contingent was fol-
lowed by extinction training ( no reinforcement}), there
was decay of the conditioning toward baseline level
(Figure 7). This extinction resulted from the gradual
decay of cCAMP in the AEs. Due to the kinetics of CAMP
synthesis and decay, extinction was slow relative to the
acquisition of conditioning, and the conditioning that
occurred during the 40 min of contingent training did
not completely extinguish during a subsequent 80 min
period of extinction training. In Aplysia, as in the
model, it appears that acquisition of a conditioned re-
sponse is more rapid than the extinction of that re-
sponse (Cook & Carew, 1986).

If instead of removing reinforcement, the contin-
gency was reversed during the second training period
(reinforcement was delivered when activity in MNp ex-
ceeded activity in MN, ), the reduction of the portion
of time spent producing the operant response, Output

Extinction and Reversal
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fo—i [ ~
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g 40 -
§T
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FIGURE 7. Extinction and Reversed Contingency. A 40 min pe-
riod of contingent training is followed by more than 80 min of
either extinction or reversed contingency training. When rein-
forcement is discontinued during extinction, there is a gradual
reduction in the duration of activity in MN,. When the contin-
gency is reversed (reinforcement is delivered when MN, is
inactive and MN; is active), the reduction of the portion of time
spent producing Output A is accelerated.
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A, was accelerated. Conditioning was even reduced to
below baseline level (Figure 7), due to the associative
enhancement of the AEg-to-MNj synapse, which
tended to increase the relative amount of time spent
producing Output B. Similar effects of reversed contin-
gency training were also observed in operant condi-
tioning of head-waving in Aplysia (Cook & Carew,
1986).

3.4. Magnitude of Reinforcement

Although the effects of the magnitude of reinforcement
on operant conditioning have not been examined in
Aplysia, behavioral studies in many animals indicate
that conditioning often varies as a function of the mag-
nitude of reinforcement (for review, see Bonem &
Crossman, 1988). In the model, the magnitude of re-
inforcement is represented by K¢, the rate of cAMP
synthesis produced by reinforcement in the presence
of a given level of Ca?* in the AE (see eqn (18)). Op-
erant conditioning was found to vary as a function of
K (Figure 8). Conditioning occurred at the highest
rate in response to the largest values of Kzc. This reflects
the more rapid accumulation of cAMP and facilitation
of synaptic strength in the AE on the reinforced side
of the network with reinforcement of a larger magni-
tude. Thus, the model can simulate the general feature
of operant conditioning that more intense reinforcing
stimuli produce an accelerated rate of conditioning.

Another effect of increasing the magnitude of rein-
forcement in the model was a reduction in the level of
conditioning that was reached. This occurred because
increasing the rate of cCAMP synthesis increased the
amount of CAMP produced in the AE on the nonrein-
forced side of the network as the result of residual Ca2*
in that cell. In the AE on the reinforced side, however,
the asymptotic level of CAMP was always at the ceiling
level, so increasing K¢ caused it to reach saturation
more rapidly, but it did not increase cAMP beyond its
already maximum value. Therefore, the duration of
bursts on the nonreinforced side of the network was
substantially longer after conditioning when K- was
increased, but the asymptotic duration of bursts on the
reinforced side was not affected in this way by changes
in Kgc. Thus, there was an increase in the relative
amount of time spent producing the nonreinforced be-
havior when K- was increased, and conditioning was
reduced. This result differs from that typically reported
in empirical studies of vertebrates, thus providing a
testable prediction of the model.

3.5. Delay of Reinforcement

In our model, as in most behavioral studies, increasing
the delay between the performance of a behavior and
the delivery of reinforcement decreased the rate of con-
ditioning (Figure 9). This occurred because the delay
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FIGURE 8. Magnitude of Reinforcement. The magnitude of re-
inforcement was varied by varying K, the ‘gain’ for cAMP
production. Conditioning occurs at the highest rate in response
to reinforcement of the greatest magnitude.

reduced the amount of time that the reinforcement was
present while Ca?* was high in the reinforced AE and
low in the nonreinforced AE.

3.6. Sensitivity to Contingency

Most behaviors that exhibit operant conditioning dem-
onstrate a sensitivity to the contingency of reinforce-
ment, the correlation between the occurrence of the
operant behavior, and the delivery of reinforcement
(Konorski, 1948). If contingency is decreased by de-
livering reinforcement in the absence of the operant or
by not reinforcing each occurrence of the operant, the
rate of conditioning is reduced. We simulated both ma-
nipulations of contingency. First, extra noncontingent
reinforcements were added at random intervals during
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FIGURE 9. Delay of Reinforcement. When the delay between
the occurrence of the operant and the delivery of reinforcement
is increased, the rate of conditioning is decreased.
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the contingent training paradigm. This procedure de-
creased conditioning ( Figure 10a). The noncontingent
reinforcements contributed to the synthesis of cAMP
in both AEs. Since the level of cAMP in the reinforced
AE reached the ceiling level during contingent training,
cAMP reached the same level whether extra reinforce-
ments were delivered or not. Therefore, the duration
of bursts on the reinforced side was approximately six
times the length of bursts during baseline after contin-
gent training with or without extra noncontingent re-
inforcements. However, on the nonreinforced side, since
¢AMP was not saturated by contingent training, the
extra random reinforcements produced additional
cAMP, and thus considerably increased the duration
of bursts on the nonreinforced side. The result was a
decrease in conditioning when contingency was reduced
by adding noncontingent presentations of the rein-
forcement.

The contingency between response and reinforce-
ment was also reduced by changing from a continuous
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FIGURE 10. Contingency. (a) The delivery of extra, noncontin-
gent reinforcements during contingent training reduces con-
ditioning. (b) A continuous reinforcement schedule (every oc-
currence of the operant is reinforced) produces more rapid
conditioning than a partial reinforcement schedule, which de-
creases the contingency between response and reinforcement.
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reinforcement to a partial reinforcement schedule (i.e.,
reinforcement was only delivered in response to every
other or every third occurrence of the operant behavior;
Figure 10b). Partial reinforcement reduced the rate of
conditioning because cCAMP production was activated
less frequently, and therefore cCAMP and changes in
synaptic strength accumulated more slowly (even for
the same number of reinforcements, since there was
more time for the decay of CAMP between reinforce-
ments). Thus, the model was able to simulate sensi-
tivity to contingency, a general feature of operant con-
ditioning.

4. DISCUSSION

Our simulations demonstrate that a network with a
learning rule derived from a form of associative synaptic
plasticity involved in classical conditioning can simulate
behavioral data on operant conditioning. Thus, there
need not be fundamentally different cellular mecha-
nisms for the two forms of associative learning. Rather,
any differences in the neural mechanisms for the two
forms of learning may reside in some characteristic fea-
ture(s) of the network in which the cellular plasticity
is embedded.

To the extent that the circuit and the learning rule
in our model reflect features of the actual neural cir-
cuitry and plasticity in Aplysia, the model predicts sev-
eral interesting features of operant conditioning of head-
waving. First, from the MN traces in Figs. 5 and 6, it
is clear that there was an increase in not only the du-
ration but also the amplitude of bursts of activity in
the MN corresponding to the reinforced output. These
results would predict that some measure of the behavior
other than its duration would increase during condi-
tioning. One possibility is that the strength of a muscle
contraction that contributes to execution of the rein-
forced behavior would increase. Indeed, when individ-
ual left and right neck muscles of Aplysia are subjected
to operant conditioning, changes are observed in the
differential spike rate in EMG recordings of these mus-
cles (Cook & Carew, 1989b), and such changes are
quantitatively related to the magnitude as well as the
direction of the head-waving response (Cook & Carew,
1989a). Thus, an output can be changed not only in
duration but also in some additional way by the operant
training procedure. This feature of our model is a result
of the graded inputs and outputs of the MNs and would
not emerge if these elements were modeled as simple
two-state (ON/OFF) elements.

Second, in our simulations, operant conditioning re-
sulted in a small increase in the absolute duration and
amplitude of bursts of activity in the nonreinforced
output. This result is consistent with behavioral data
using a variety of animal subjects, which indicate that
behaviors other than the one that is the target of operant
conditioning can also change during training. For ex-
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ample, if a rat is punished for running down an alley,
the frequency of flinching, freezing, or withdrawal be-
haviors may increase, although these behaviors are not
being specifically conditioned (Fowler & Miller, 1963).
In addition, the presentation of reinforcers, in particular
negative reinforcers, can lead to changes in the behavior
patterns of subjects, even in the absence of any contin-
gency between their behavior and the delivery of the
reinforcer, For example, animals exposed to inescapable
shock become inactive (Anisman, deCatanzaro, &
Remington, 1978). Our model also demonstrated
changes in response to random presentations of rein-
forcement during control simulations. In our model,
changes in outputs that were not contingently rein-
forced resulted from the interaction of the diffuse mod-
ulatory system with residual or ‘coincidental’ Ca?* in
the AE controlling the nonreinforced behavior. These
features of conditioning have not yet been examined
in Aplysia; thus, they represent an important subject
for future study.

An important aspect of any model is the way in
which its global properties emerge from the interaction
of the cellular properties of the individual components
of the network and network properties such as con-
nectivity. Our model exhibits several general features
of operant conditioning. A number of these result from
the specific cellular properties of the AEs. For example,
extinction in our model results from the decay of cAMP
within the AEs, which causes a return to the baseline
values of AE-to-MN synaptic strength and, hence, burst
duration. However, other features of the model depend
upon an interaction of cellular and circuit properties.
The sensitivity to the decreased contingency produced
by extra noncontingent presentations of the reinforce-
ment would not occur without the mutual inhibition
of the two PGs. Thus, properties of the network as well
as cellular properties such as the associative plasticity
rule contribute to the overall behavior of the model.

Our simulations illustrate plausible mechanisms by
which a number of features of operant conditioning
could emerge from a very simple neural network and
plasticity rule. This does not mean that other circuits
could not produce many of the same features. For ex-
ample, we chose to incorporate the activity-dependent
neuromodulation learning rule into neurons interposed
between the CPG and the MNs. This had the advantage
of separating, to some extent, the associativity function
from other functions of the network (e.g., pattern gen-
eration, output, feedback ). However, activity-dependent
neuromodulation could also have been incorporated
into the CPG or the MNs. There exists considerable
evidence that these other sites might be important loci
of plasticity contributing to conditioning in inverte-
brates. For example, studies of the conditioning of leg
positioning in locust suggest that the motor neurons
are a potential site for the associative plasticity involved
in this instance of operant conditioning (Hoyle, 1982).
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Plasticity at this site would have certain consequences,
in particular a loss of specificity, in that all behaviors
controlled by the motor neurons, not just the one being
conditioned, would be altered by training. In Aplysia,
for example, if the neck motor neurons were the site
of plasticity for the operant conditioning of headwaving,
then other behaviors controlled by the neck motor neu-
rons, such as withdrawal of the head, would also be
altered by the conditioning of head-waving. There is
also evidence that CPGs may contain plastic elements
(Getting & Dekin, 1985). Thus, different types of
neural elements may be the locus of associative plas-
ticity in different circuits, and an interesting question
for future studies is the extent to which the locus of
plasticity may determine the features of learning that
a particular circuit can support.
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APPENDIX
Adaptive Elements (AEs)

The equations used for the adaptive elements are presented below.
For additional details see Gingrich and Byrne (1985, 1987).

Dynamics of Ca?*

ligca=A-B-Ke, (Al)
A=1—exp(—4,/T,), (A2)

B = C-exp(—1,/T)), (A3)
C=1-(1— B")-exp(—t2/ Trec). (A4)

Fye = Ku/(1 + My/Clgca), (AS5)
Fpc = Caeca* Kp, (A6)
dC;'tE.Ca _ Uspca— [I/::C — Fpc) . (A7)

Dynamics of Transmitter Mobilization

Fp = (Cs— Cr)- Kyp, (A8)
Kr
Fe=|PVMs+ ———L
¢ (P Ms 1+MF/CL‘E'.Ca)’ (A9)
dPVMy Ks 1
= — PVMg|-—
a ((1+Mst§?s.c.1) d Ms) T, A0
Feamp = Kec* Ceamps (All)
dCy

- (Feamp + Fc+ Fp = TR)-(1/Vz).  (Al2)

Dynamics of cAMP

In the absence of activity in the FN:

dc,
dc;MPz (—Ceoamp! Teamp). (A13)
In the presence of activity in the FN:
dc,
d,t(MP_—_ (—Ceamp! Tearsp) + (Kec® Cagca)- (A14)

Release of Transmitter
spike duration = 0.003 + (Kpc* Coamp), (A15)
Tx = Cr Ve Ica+ Kr. (A16)
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Values and Definitions of Constants

C,s 100 concentration of transmitter in
storage pool

Crnax 2400 cAMP ceiling

K, 1.0 constant for Ca®* current

Kp 0.34 diffusion constant for Ca?*

Kpe 1.5-1073 constant for spike duration

Kec 50 constant for Ca?*-dependent syn-
thesis of cAMP

Ky 21.0 maximal rate of fast mobilization

Krc 2-107* constant for CAMP-dependent mo-
bilization

Kr 1.0 constant for transmitter release

K 35.0 maximal rate of slow mobilization

Ky 2907 constant for Ca®* uptake

Kyp 0.001 constant for diffusion of transmitter

Mg 0.0008 concentration constant for fast
mobilization

Mg 0.075 concentration constant for slow
mobilization

My 790.0 concentration constant for Ca®
uptake

Ny 2.83 Hill coefficient for fast mobilization

Ns 1.75 Hill coefficient for slow mobiliza-
tion

T, 0.001 time constant for activation of Ca*
channel

Teanr 900 time constant of CAMP

T, 0.44 time constant for inactivation of
Ca?* channel

Trec 0.01 time constant for recovery from in-
activation of Ca?* channel

Ts 213.0 time constant for slow mobilization

Ve 2.15 volume of Ca?* compartment

Va 1.0 volume of releasable pool

Initial Values and Definitions of Variables

A 0 activation of Ca®* channel
B 1 inactivation of Ca?* channel during
spike
B’ 1 value of B at end of a spike
C 1 recovery from inactivation of Ca®*
channel
Cacca 0 concentration of Ca**
cAMP 0 concentration of CAMP
R 500 concentration of transmitter in re-
leasable pool
Fe 0 Ca**-dependent mobilization
Feamp 0 cAMP-dependent mobilization
D 0 diffusion of transmitter
Fpe 0 diffusion of Ca®*
Fye 0 uptake of Ca?*
Ligca 0 Ca?* current
PVM 0 potential for mobilization
t 0 time after beginning of spike
t 0 time after last spike
Tr 0 release of transmitter

NEURONS OF THE CENTRAL PATTERN
GENERATOR (PGs)

Values and Definitions of Constants

Cn 1.3-1073 membrane capacitance

Ec, 120 equilibrium potential for Ca**

Ex -175 equilibrium potential for K*
GrG.anp 0.5 maximum conductance for Ipg o,
Gpgca 0.002 maximum conductance for Ipg ¢,
Gpo,cav 0.625 maximum conductance for Ipg ¢,
GrG,syn 0.25 maximum conductance for Ipg,y,
Krg 0.36 feedback constant for modulation

of Ip,cav
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Kr6.pe 0.054 diffusion constant for Ca**

Kpeuc 0.54 uptake constant for Ca*

TrG.anp 0.011 time constant for activation and in-
activation of Ipg an,

Trcav 50-107* time constant for activation and in-
activation of J, PG,CaV

TG syn 0.075 time constant for activation and in-
activation of Ipg spn

Ve 2.15 volume of cytosol

Initial Values of Variables

The initial value of all variables is zero, with the exception of the
following:

Vo (PGa) —60
Vo (PGg) -70

membrane potential in PG,
membrane potential in PGy
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MOTOR NEURONS (MNs)

Values and Definitions of Constants

Trg 1.0
Ty 0.1

time constant for feedback
time constant for response
of MN to transmitter

Initial Values of Variables

AMN 0
F 0

The model was implemented with a program written in FOR-
TRAN using the Euler method of integration with a uniform inte-
gration step size of 2.0- 107 sec. All times and time constants are
given in seconds.

activation level
feedback





