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Brain activity evolves through time, creating trajectories of activity that
underlie sensorimotor processing, behavior, and learning and memory.
Therefore, understanding the temporal nature of neural dynamics is es-
sential to understanding brain function and behavior. In vivo studies
have demonstrated that sequential transient activation of neurons can
encode time. However, it remains unclear whether these patterns emerge
from feedforward network architectures or from recurrent networks and,
furthermore, what role network structure plays in timing. We address
these issues using a recurrent neural network (RNN) model with dis-
tinct populations of excitatory and inhibitory units. Consistent with ex-
perimental data, a single RNN could autonomously produce multiple
functionally feedforward trajectories, thus potentially encoding multi-
ple timed motor patterns lasting up to several seconds. Importantly, the
model accounted for Weber’s law, a hallmark of timing behavior. Anal-
ysis of network connectivity revealed that efficiency—a measure of net-
work interconnectedness—decreased as the number of stored trajectories
increased. Additionally, the balance of excitation (E) and inhibition (I)
shifted toward excitation during each unit’s activation time, generating
the prediction that observed sequential activity relies on dynamic con-
trol of the E/I balance. Our results establish for the first time that the
same RNN can generate multiple functionally feedforward patterns of
activity as a result of dynamic shifts in the E/I balance imposed by the
connectome of the RNN. We conclude that recurrent network architec-
tures account for sequential neural activity, as well as for a fundamental
signature of timing behavior: Weber’s law.
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1 Introduction

The ability to accurately tell time and generate appropriately timed motor
responses is essential to most forms of sensory and motor processing. How-
ever, the neural processes used to encode time remain unknown (Mauk &
Buonomano, 2004; Buhusi & Meck, 2005; Ivry & Schlerf, 2008; Merchant,
Harrington, & Meck, 2013). While the brain tells time across many scales,
ranging from microseconds to days, it is on the scale of tens of milliseconds
to a few seconds that timing is most relevant to sensory-motor processing
and behavior. Several neural mechanisms have been proposed to account
for temporal processing in this range (for reviews, see Hardy & Buono-
mano, 2016; Hass & Durstewitz, 2016), including pacemaker and counter
internal clocks (Treisman, 1963; Gibbon, Church, & Meck, 1984), ramping
firing rates (Durstewitz, 2003; Simen, Balci, deSouza, Cohen, & Holmes,
2011), the duration of firing rate increases (Gavornik, Shuler, Loewenstein,
Bear, & Shouval, 2009; Namboodiri, Huertas, Monk, Shouval, & Hussain
Shuler, 2015), models that rely on the inherent stochasticity of sensory sig-
nals and neural responses (Ahrens & Sahani, 2008, 2011), and finally “popu-
lation clocks,” in which timing is encoded in the evolving patterns of activ-
ity within recurrent circuits (Buonomano & Mauk, 1994; Mauk & Donegan,
1997; Medina & Mauk, 1999; Buonomano & Laje, 2010).

The theory that time is encoded in the dynamics of large populations of
neurons has received experimental support in several brain regions, includ-
ing the cortex (Crowe, Averbeck, & Chafee 2010; Merchant, Zarco, Pérez,
Prado, & Bartolo, 2011; Harvey, Coen, & Tank, 2012; Kim, Ghim, Lee, & Jung,
2013; Crowe, Zarco, Bartolo, & Merchant, 2014; Bakhurin et al., 2017), basal
ganglia (Jin, Fujii, & Graybiel, 2009; Gouvea et al., 2015; Mello, Soares, &
Paton, 2015), hippocampus (Pastalkova, Itskov, Amarasingham, & Buzsaki,
2008; MacDonald, Lepage, Eden, & Eichenbaum, 2011; Kraus, Robinson,
White, Eichenbaum, & Hasselmo, 2013; Modi, Dhawale, & Bhalla, 2014),
and area HVC in songbirds (Hahnloser, Kozhevnikov, & Fee, 2002; Long,
Jin, & Fee, 2010). Some of these studies report relatively simple, apparently
feedforward, sequential patterns of activity in brain regions containing sig-
nificant recurrent connectivity. A fundamental question is whether these
patterns of activity are generated by truly feedforward circuits or, rather, by
recurrent circuits generating “functionally feedforward” patterns of activity
(Banerjee, Series, & Pouget, 2008; Goldman, 2009). Here we define “func-
tionally feedforward trajectories” as those generated by recurrent neural
networks and characterized by sequential patterns of activation (“moving
bumps”) in which any given unit fires only once during a pattern.

Synfire chains are perhaps the simplest network-based model that could
account for the reports of functionally feedforward patterns of activity. Typ-
ically synfire chain models consist of many pools of neurons connected in a
feedforward manner such that activation of one pool results in the sequen-
tial activation of each downstream pool (Abeles, 1991; Diesmann, Gewaltig,
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& Aertsen, 1999). However, cortical circuits, where functionally feedfor-
ward activity is often observed, are characterized by recurrent connections
and local inhibition, features that standard synfire chain models generally
lack (Harvey et al., 2012). Moreover, the capacity of these synfire networks is
limited because any given neuron generally participates in only one pattern
(Herrmann, Hertz, & Prügel-Bennett, 1995). To address these issues, we use
a model of recurrent neural networks (RNNs) to examine how they might
produce functionally feedforward patterns of activity that encode time.

Previous studies of timing using RNNs have not sought to simulate ex-
perimentally observed patterns of neural activity and have used RNNs that
do not follow Dale’s law. We expand on previous work (Laje & Buonomano,
2013; Rajan, Harvey Christopher, & Tank, 2016) by training RNNs that fol-
low Dale’s law to emulate experimentally observed activity patterns. In
addition, unlike standard RNN models, the networks in this study have
only positive value firing rates. The networks are trained using the innate-
training learning rule to autonomously produce stable activity for up to
5 seconds, two orders of magnitude greater than the time constant of the
units (Laje & Buonomano, 2013; Rajan et al., 2016). Our results demonstrate
that RNNs can robustly encode time by generating functionally feedfor-
ward patterns of activity. Importantly, these networks account for a char-
acteristic of motor timing known as Weber’s law (Gibbon, 1977; Gibbon,
Malapani, Dale, & Gallistel, 1997), and can encode multiple feedforward
patterns. Analysis of trained networks revealed changes in the balance of
excitation and inhibition that account for the production of this feedforward
activity, thus generating an experimentally testable prediction.

2 Results

2.1 Recurrent Neural Networks Produce Functionally Feedforward
Trajectories. We first examined if recurrent neural networks can generate
the sequential patterns of activity observed in the cortex and hippocampus
(Pastalkova et al., 2008; Crowe et al., 2010, 2014; MacDonald et al., 2011).
Typically in these areas, any neuron participating in a sequence is active for
periods of hundreds of milliseconds to a few seconds. We used a modified
version of standard firing-rate RNNs in which units are sparsely and ran-
domly connected to one another (Sompolinsky, Crisanti, & Sommers, 1988).
Specifically, to more closely mimic neural physiology, we incorporated sep-
arate populations of excitatory and inhibitory units (see Figure 1A). Fur-
thermore, the firing rate of each unit was bounded between 0 and 1 (see
section 4).

We used a supervised learning rule to adjust the recurrent weights and
train the network to produce a functionally feedforward trajectory in re-
sponse to a brief (50 ms) input. Specifically, the networks were trained to
produce a 5 sec target sequence of feedforward activity such that each unit
in the network was transiently activated without being driven by external
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Figure 1: Generation of feedforward trajectories within a RNN. (A) Schematic
of network architecture. The networks were composed of 600 excitatory (blue)
and 600 inhibitory (red) firing rate units (NRec = 1200), with sparse recurrent
connections. Neurons at the beginning of a sequence received input (green)
during a 50 ms window to trigger the trajectory. (B) Connection weights were
initialized with a gaussian distribution. After training to produce a single feed-
forward sequence, a large number of weights were pruned to zero, and some
weights became stronger, resulting in a long-tailed distribution. (C) Example
five sec feedforward sequence target. (D) After training, the RNN can produce
a 5 sec feedforward trajectory. Top: Two units trained to activate in the middle
and end of the trajectory, highlighted below. Each trace represents 1 of 15 trials.
Bottom: Example network activity from a single trial.

input (see Figure 1C). This activity pattern can be thought of as a moving
bump of neural activity. After training, the network was able to reproduce
the 5 sec neural trajectory in response to the brief input (see Figure 1D).
Importantly, after the end of the trajectory, the RNN returned to an inac-
tive rest state. Thus, in contrast to RNNs in high-gain regimes, these net-
works were silent at rest. Training dramatically altered the distribution of
synaptic weights in the network: the weight of many synapses converged
to 0 (in part as a consequence of the boundaries imposed by Dale’s law)
while others were strengthened, resulting in long tails (see Figure 1B). These
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long tails of the synaptic weight distribution are in line with experimentally
observed distributions of synaptic weights (Song, Sjostrom, Reigl, Nelson,
& Chklovskii, 2005) and observations in previous models of neural dynam-
ics in RNNs (Laje & Buonomano, 2013; Rajan et al., 2016).

2.2 RNNs Can Encode Multiple Sequences. Many motor behaviors
such as playing the piano or writing require the use of the same muscle
groups activated in distinct temporal patterns. If the motor cortex is to drive
these motor patterns, it must produce distinct well-timed trajectories of
neural activity using the same sets of neurons activated in different orders.
Traditional models of sequential neural activity (e.g., standard feedforward
synfire chains) do not account for this because each unit generally partici-
pates in only a single sequence.

To examine the capacity of recurrent networks to encode multiple func-
tionally feedforward trajectories, we trained RNNs to learn patterns in
which all units participated in each trajectory. RNNs were trained to learn
1, 3, 5, 10, or 20 distinct sequences. Each sequence lasted 1 sec and was trig-
gered by a distinct input. As shown in Figure 2A, an RNN can generate mul-
tiple distinct patterns in response to distinct inputs. Importantly, each pat-
tern recruits all the units in the network. To quantify the network capacity,
we calculated the correlation between the evoked activity on each test trial
and the corresponding target. We used the average correlation across tar-
gets as a measure of performance. Trained networks could reliably produce
10 1 sec sequences with relatively little decrement in performance. How-
ever, when RNNs were trained on 20 patterns, they showed a large decrease
in performance (one-way ANOVA, F4,45 = 193, p < 10−27, n = 10 networks;
see Figure 2B) and increased failure rate (number of trials in which the input
did not evoke a pattern or generated a partial sequence; one-way ANOVA,
F4,45 = 419, p < 10−35, n = 10 networks).

2.3 Functionally Feedforward Trajectories Account for Weber’s Law.
A defining feature of behavioral timing is that there is an approximately
linear relationship between the standard deviation and mean of a timed
response (Gibbon, 1977; Gibbon et al., 1997), referred to as the scalar prop-
erty or Weber’s law. The ability to account for Weber’s law is often taken as
a benchmark for models of timing and does not generally emerge sponta-
neously in many models (Ahrens & Sahani, 2008; Hass & Herrmann, 2012;
Hass & Durstewitz, 2014). To examine whether the RNNs studied here obey
Weber’s law, we measured the temporal variability of each unit within a
single feedforward pattern at different levels of noise. We fit the activity
of each unit on every test trial with a gaussian function and calculated the
standard deviation and mean of the peak time of each unit’s fit across trials
(see section 4). We used Weber’s generalized law to fit the standard devi-
ation as a function of time and refer to the slope of this linear fit as the
Weber coefficient (Ivry & Hazeltine, 1995; Merchant et al., 2008). Note that
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Figure 2: A single RNN can encode many different feedforward trajectories.
(A) The units of the same trained RNN in response to two different inputs. Each
column shows the spatiotemporal pattern of activity triggered by a single input.
Each row shows the activity sorted according to feedforward trajectory 1 (top
row) or 2 (bottom row). Blue and pink dashed lines highlight the same two units
in all panels. (B) Performance (top) and failure rate (bottom) for 10 networks
trained to produce up to 20 trajectories. Each dot represents the average across
15 trials per target for a single network. Each network can reliably produce up
to 10 feedforward sequences before performance decreases. Error bars show the
mean ± SEM.

Weber’s generalized law allows for a positive intercept. In each of 10 trained
networks, we found that the standard deviation of a unit’s peak firing time
across trials increased linearly with its mean activation time (see Figure 3A).
This property was highly robust: while the Weber coefficient increased with
the amount of noise injected into the network, the scalar property was pre-
served even at large noise amplitudes (see Figure 3B). Thus, Weber’s law
was not limited to any specific noise parameter choice.

2.4 Sequences Are Generated by Dynamic Shifts in the Balance of Ex-
citation and Inhibition. Experimental studies have conclusively demon-
strated that functionally feedforward patterns of activity occur in vivo, but
these studies have not been able to explore the neural and network mecha-
nisms underlying these patterns (Pastalkova et al., 2008; Harvey et al., 2012;
MacDonald, Carrow, Place, & Eichenbaum, 2013). Computational models
allow us to address this question and generate experimental predictions.
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Figure 3: Timing generated by the RNN obeys Weber’s law. (A) Temporal vari-
ability increases linearly with elapsed time. Each dot shows the standard de-
viation of the activation time of a unit of an example network plotted against
its mean. The activation time of each unit on each trial was determined from
the center of a gaussian fit of that unit’s activity. Each color represents one of
six amplitudes of injected noise. Lines show the linear fit. (B) The Weber law is
robust to noise. The Weber coefficient (slope of the linear fit shown in panel A)
is shown across six noise amplitudes for 10 trained networks. Each dotted line
represents a single network, and the solid black line represents the mean with
error bars showing ± SEM. Inset: Mean ± SEM of the goodness of fit (R2) for
the linear fits.

To determine how RNNs generate sequential activity, we first examined
the balance of excitation and inhibition in the units during the trained pat-
terns. This analysis parallels experimental studies that have examined the
relative balance of excitatory and inhibitory currents (Shu, Hasenstaub, &
McCormick, 2003; Froemke, Merzenich, & Schreiner, 2007; Heiss, Katz, Gan-
mor, & Lampl, 2008). We examined the balance of excitation and inhibition
by separately summing the total excitatory and inhibitory input onto each
unit at all time points. Figure 4Ashows the relationship between the E/I bal-
ance and firing rate in a single example unit. Interestingly, when cells were
not active, they still received significant excitation and inhibition, and these
inputs were usually approximately balanced (E/I ∼= 1), similar to a recent in
vitro study of temporal processing (Goel & Buonomano, 2016). This balance
shifted toward excitation (E/I > 1) primarily during a unit’s target activity
period. By plotting the E/I ratio of all the neurons in the network during
a trajectory, it is possible to visualize the progressive shift in the E/I bal-
ance during a feedforward sequence (see Figure 4B). These observations are
consistent with experimental studies during up-state activity showing that
excitatory and inhibitory currents are balanced and that changes in activity
consist of subtle shifts toward excitation (Shu et al., 2003; Haider, Duque,
Hasenstaub, & McCormick, 2006; Sun et al., 2010), as well as recent work
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Figure 4: Feedforward trajectories are generated by dynamic shifts in the E/I
balance. (A) The excitation/inhibition (E/I) ratio peaks around a unit’s activa-
tion time. Top: The activity of an example unit, which peaked in the middle of
a 5 sec trajectory. Bottom: Inhibitory (red) and excitatory (blue) inputs are high
but usually balanced throughout the trajectory, but the balance shifts toward
excitation when the unit is active. E/I ratio shown in pink. (B) A heat-map of
the ratio of the same network showing a shifting peak of the ratio along the tra-
jectory (during one trial). (C) Excitatory (top) and inhibitory (bottom) weight
matrices of a network sorted according to the activation order. Note the peak
in synaptic strength following the activation order along the diagonal. Weights
are smoothed for visualization. (D) Averaging along the feedforward trajectory
reveals a peak in excitatory weights pointing forward, bounded by inhibition.
The absolute value of the weight matrix was centered along the feedforward se-
quence and averaged according to excitatory and inhibitory units. Top: Weights
of a network trained for one pattern. Bottom: The same initial network, but
trained for 10 feedforward patterns.
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showing timing-specific shifts in E/I balance in vitro (Goel & Buonomano,
2016).

To examine the origins of the dynamic shift in the E/I balance, we ana-
lyzed the synaptic connectivity matrix. When sorted according to activation
order, connections from both inhibitory and excitatory units displayed a
pattern of peak connection strength along the sequence of activation (see
Figure 4C). To examine the structure of the connectome, we shifted the
sorted weight matrix to align the window of activity of each postsynap-
tic cell within the trajectory. Taking the mean across all cells of this shifted
weight matrix revealed a peak of excitation pointing forward along the tra-
jectory (i.e., the excitatory weights are asymmetrically shifted to the right),
bounded by peaks of inhibition (see Figure 4D, upper panel). Despite the
rightward shift of the peak—and in contrast to feedforward networks—the
excitatory units are clearly connected in the “forward” and “backward” di-
rections. This anatomical feature allows for the local mutual excitation nec-
essary to keep units active for durations of up to 1 sec. This Mexican hat
connectivity pattern has been observed in other studies of sequence gen-
eration (Itskov, Curto, Pastalkova, & Buzsáki, 2011; Rajan et al., 2016) and
accounts for the moving bump of activation in feedforward RNNs. Interest-
ingly, for a single pattern, the shift of the E/I balance toward excitation was
primarily driven by an increase in excitation (see Figure 4D, upper panel).
However, when the same analysis is performed for networks that learned
10 patterns, the E/I shift driving activity forward was generated by both
an increase in excitation and a decrease in inhibition (see Figure 4D, lower
panel). Taken together, these results predict that recurrent networks in the
cortex generate functionally feedforward sequences of activity using asym-
metries in the connectivity patterns between neurons and dynamic shifts in
the E/I balance.

2.5 Connectivity of RNNs Reflects the Number of Encoded Trajec-
tories. There is increasing emphasis on characterizing the microcircuit
structure, or the connectome, of biological neural circuits. To further ex-
amine the relationship between the microcircuit structure in our model
and potentially generate experimental predictions, we calculated network
efficiency—a standard measure from graph theory that captures the inter-
connectedness of the units in a graph (Boccalettii, Latora, Moreno, Chavez,
& Hwang, 2006). Specifically, it measures the minimal weighted path length
between units, such that a larger efficiency value corresponds to a shorter
path (see section 4). Because we were interested in the relationship between
structure and function, we compared efficiency measures of coactive and
noncoactive units. Furthermore, since the activity in any unit is the result
of the interaction between excitatory and inhibitory inputs, we separately
calculated the net excitatory and inhibitory connection strengths between
pairs of units, generating topological representations of recurrent excitation



Models of Feedforward Activity 387

Figure 5: Multiple feedforward patterns are embedded via uniform path
lengths between units. (A) Average disynaptic efficiency between coactive (un-
shaded) and noncoactive (shaded) unit pairs in an RNN trained for a single
feedforward target. Units that are coactive during a trajectory have a higher
mean efficiency compared to noncoactive pairs. Efficiency values were normal-
ized to the mean to aid visualization. (B) Same as panel A but showing the same
initial network trained such that more units are coactive at a given time (lower
temporal sparsity). The efficiency across the network is more uniform. (C.) Same
as in panel A, now trained for 10 targets. In panels Ato C, postsynaptic efficiency
values were aligned according to the activation order of the presynaptic unit
within the same target order and averaged across units. (D) Average efficiency
of connections between coactive and noncoactive units according to the number
of trained trajectories. Efficiency increases sharply from the naive weights. As
more trajectories are encoded, efficiency becomes uniform across the network,
that is, the difference between coactive and noncoactive units decreases.

and inhibition. We then calculated the weighted efficiency index of these
connections in trained untrained networks.

As expected, when we averaged along a single trained sequence of
feedforward activity, we observed that units that coactivate (i.e., active at
neighboring points in time) had a higher-than-average efficiency value (see
Figure 5A), similar to the observed Mexican hat architecture in Figure 4D.
However, when networks were trained to sustain more coactive units (see
Figure 5B), or were trained to produce a larger number of targets (see
Figure 5C), the connection efficiency between coactive and noncoactive
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units approached the network mean. Finding the average disynaptic ef-
ficiency between coactive and noncoactive units revealed that efficiency
sharply increased when networks were trained for a single target, with
coactive efficiency exceeding noncoactive (Figure 5D). As more trajectories
were encoded, this difference decreased, indicating that efficiency became
uniform with respect to unit pairs’ active relationship. Moreover, networks
with more coactive units (40% active) were initially more uniform than
those with fewer coactive units (i.e., the efficiency between coactive and
noncoactive units was more similar), consistent with the notion that higher
local efficiency may be necessary to maintain temporally sparser trajectories
in order to support more local positive feedback between coactive units.

3 Discussion

Functionally feedforward patterns of activity have been observed in a wide
range of different brain areas (Pastalkova et al., 2008; MacDonald et al., 2011;
Kraus et al., 2013; Mello et al., 2015; Bakhurin et al., 2017). These patterns
have been proposed to underlie a number of different behaviors, including
memory, planning, and motor timing. Here we have focused primarily on
the potential role of such patterns in timing, specifically in tasks that ani-
mals must learn to generate timed motor patterns or anticipate when exter-
nal events will occur on the scale of hundreds of milliseconds to seconds.
Our results show that even though many of these experimentally reported
patterns of sequential activation are apparently accounted for by feedfor-
ward architectures, recurrent neural networks are more consistent with the
data. Furthermore, recurrent architectures are computationally more pow-
erful in that they can store many different trajectories in which each unit
participates in each trajectory. We propose that networks with recurrent ex-
citation underlie the functionally feedforward trajectories observed in cor-
tical areas.

A number of models have proposed mechanisms for generating func-
tionally feedforward patterns within recurrent networks (Buonomano,
2005; Liu & Buonomano, 2009; Fiete, Senn, Wang, & Hahnloser, 2010; It-
skov et al., 2011; Rajan et al., 2016). These studies have used both spiking
and firing rate models and relied on a number of different mechanisms,
but they have not explicitly addressed a standard benchmark for behav-
ioral timing: Weber’s law. One recent model developed by Rajan et al. (2016)
also trained RNNs using an RLS-based learning rule, and our results com-
plement their findings: specifically, by tuning the recurrent weights of an
initially randomly connected network, it is possible to robustly encode mul-
tiple functionally feedforward patterns of activity. That study, however, fo-
cused primarily on sequence generation and encoding memory-dependent
motor behaviors; it did not encode time per se as the network was driven in
part by time-varying inputs (i.e., external information about the time from
trial onset was present).
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3.1 Weber’s Law. Here we show that an RNN can encode time and ac-
count for Weber’s law, more specifically Weber’s generalized law, which
states that the standard deviation of a timer increases linearly with elapsed
time (Ivry & Hazeltine, 1995; Merchant et al., 2008; Laje, Cheng, & Buono-
mano, 2011). The origins of Weber’s law in timing models is a long-standing
and vexing problem because, according to the simplest model in which an
accumulator integrates the pulses of a noisy oscillator, the standard devia-
tion of the latency of a neuron, or of a motor output, should increase as a
function of the square root of total time (Hass & Herrmann, 2012; Hass &
Durstewitz, 2014, 2016). In contrast, the current model naturally captures
Weber’s law (at least within the parameter regimes used here), even at high
noise amplitudes. Major issues remain, such as the properties underlying
Weber’s law in recurrent networks and why the brain settles for the ob-
served linear relationship (Hass & Herrmann, 2012). We hypothesize that
these properties may be related: recurrency may inherently amplify inter-
nal noise, producing long-lasting temporal correlations (Hass & Herrmann,
2012), and evolutionarily speaking, the trade-off was adaptive because it in-
creased computational capacity.

The current model also establishes that RNNs can robustly store multiple
patterns, in which each neuron participates in every pattern. This feature is
consistent with experimental findings demonstrating that the same neuron
can participate in multiple patterns of network activity, firing within differ-
ent windows in each (Pastalkova et al., 2008; MacDonald et al., 2013). Thus,
the experimental data and the current model are consistent with stimulus-
specific timing in which time codes are generated in relation to each stimu-
lus or task condition as opposed to an absolute time code. The capacity of
the RNNs described here appears to be fairly large. But as demonstrated in
a previous study, the true capacity of RNNs is likely to be strongly depen-
dent on model assumptions, most notably noise levels (Laje & Buonomano,
2013).

Within this population clock framework, the same RNN does not func-
tion as a single clock, but rather implements many event-specific timers.
That is, the network does not encode absolute time but elapsed time from
stimulus onset, and there is an entirely different time code for each stimu-
lus. This computational strategy ensures that the activity vector at any given
instant not only encodes elapsed time but also provides a dynamic memory
of the current stimulus.

3.2 RNN Connectome. In order for sequences to propagate in a defined
trajectory through a network, activity must generate imbalances that simul-
taneously push the activity forward and prevent it from deviating from
the proper activation order (Ben-Yishai, Bar-Or, & Sompolinsky, 1995; Fiete
et al., 2010). Here we find that training an RNN composed of distinct ex-
citatory and inhibitory populations produces synaptic connectivity resem-
bling an asymmetric Mexican hat architecture, with excitation propagating
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and maintaining network activity and inhibition bounding this activity to
prevent off-target activation. Importantly, the recurrency of the network en-
ables multiple Mexican hats to be embedded in a single connectivity matrix,
allowing multiple functional feedforward patterns to be produced by a sin-
gle network.

An important characteristic of the connectome of a network is how effi-
ciently individual units exchange information. Surprisingly, we found that
the weighted efficiency of a feedforward RNN was negatively correlated
with the number of sequences stored and that this change was largely
driven by reduced efficiency between coactive units. Indeed, multitrajec-
tory networks exhibited uniform path lengths between units, regardless of
their relative activation order. This flattening of the efficiency within a net-
work is likely necessary to allow units that are highly separated in one se-
quence to also co-activate in another. Thus, a prediction that emerges from
this study is that learning may induce an overall decrease in the efficiency
of cortical circuits as the networks embed more uniform connection struc-
tures, making individually learned patterns difficult to distinguish using
connectomics.

Reports of sequential patterns of activity in multiple brain areas appear
to be superficially consistent with feedforward synfire-like architectures.
However, recurrent networks are likely responsible for generating the ex-
perimentally observed patterns for two reasons. First, although the patterns
of activity comprise sequential activation of neurons, the duration of activ-
ity over which a neuron fires (in the range of hundreds of millisecond to a
few seconds) likely relies on local positive feedback maintained by recur-
rent connections, and, second, purely feedforward network architectures
are unlikely to account for the ability of networks to generate multiple tra-
jectories in which any given neuron can participate in many different pat-
terns.

4 Materials and Methods

4.1 Network Structure and Dynamics. The network dynamics were
governed by the standard firing rate equations (Abeles, 1982; Sompolinsky
et al., 1988; Jaeger & Haas, 2004):

τ
dxi

dt
= −xi +

NRec∑

j=1

WRec
i j r j +

NIn∑

k=1

WIn
ik yk + INoise

i , (4.1)

where xi represents the state of unit i. The sparse, NRec × NRec matrix WRec

describes the recurrent connectivity, with nonzero values initially drawn
from a gaussian distribution of μ = 0 and σ = g/

√
pc ∗ NRec, where g = 1.6

is the synaptic scaling constant and pc = 0.3 is the probability a given unit
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will connect to another unit in the network (autapses were eliminated). The
firing rate, ri, of unit i is given by the logistic function,

ri = 1
1 + e−a·xi+b

, (4.2)

where a = 2 and b = 4 correspond to the gain and threshold of the units, re-
spectively. Compared to the traditional tanh function, this provides a more
biologically plausible model in which activity is low at rest (i.e., without
input), and rates are bounded between 0 and 1.

After initialization, the efferent synapses from a randomly selected half
of the recurrent units were set to be positive and the other half set to be neg-
ative to create inhibitory and excitatory populations. The NRec × NIn matrix
WIn describes the input connections from input units y to the recurrent units
and is set to stimulate only those units active at the start of a functionally
feedforward sequence with weight equal to each unit’s target activity at
t = 0. The activity of the input units was set to 0 except during the 50 ms
input window at the beginning of a trial when it was set to 3. NRec = 1200 is
the network size, and τ = 25 ms is the time constant of the units. The ran-
dom noise current (INoise) was drawn from a gaussian distribution of μ = 0
and σ = 0.5 (noise amplitude) unless otherwise indicated. A single unit of
the RNN contacted all other units and was tonically active, providing a bias
to each unit but containing no temporal information because its activity was
set to 1 at all times.

4.2 Training the RNNs. The RNNs were trained to generate target pat-
terns of sequential activity designed to mimic the functionally feedforward
activity observed in neural circuits during temporal tasks (Hahnloser et al.,
2002; Pastalkova et al., 2008; MacDonald et al., 2011; Harvey et al., 2012).
These targets were generated by setting each unit to activate briefly in
sequence so the entire population tiled the interval defined by tmax (see
Figure 1C). The activation order was generated randomly for each target
pattern and constrained so that the order of inhibitory and excitatory units
was interleaved. The pattern of activation for each unit was set by a gaus-
sian with a μ equal to the unit’s activation time. The temporal sparsity of
the pattern, defined by NActive

NRec , where NActive represents the number of units
in the target pattern that are active at any given point in time, was set to
approximately 20% by making the σ of the gaussian target function 7.5% of
tmax (Rajan et al., 2016).

Training was performed using the innate training learning rule, which
tunes the recurrent weights based on errors generated by each unit (Laje &
Buonomano, 2013), similar to the learning rule used in Rajan et al. (2016).
The error was determined by taking the difference between the activity of
the unit ri and its target activity at time t and used to update its weights
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using the recursive least squares (RLS) algorithm (see also Haykin, 2002;
Jaeger & Haas, 2004; Sussillo & Abbott, 2009; Mante, Sussillo, Shenoy, &
Newsome, 2013; Carnevale, de Lafuente, Romo, Barak, & Parga, 2015; Ra-
jan et al., 2016). As described previously (Laje & Buonomano, 2013) the
weights onto a given unit were updated proportional to its error, the activity
of its presynaptic units, and the inverse cross-correlation matrix of the net-
work activity. To maintain Dale’s law, efferent weights from all units were
bounded so that they could not cross zero (i.e., negative weights were pre-
vented from becoming positive and vice versa). The weights were bounded
to a maximum value of g + 5/

√
NRec of the appropriate sign to prevent over-

fitting. Training was conducted at a noise amplitude of 0.5, and all recurrent
units were trained.

4.3 Weber Analysis. To determine if the timing of the network obeyed
Weber’s law, we tested each network 15 times at six different INoise ampli-
tudes. For each trial, we fit the activity of each unit with a gaussian curve
and used the center of that curve as a measure of the unit’s activation time.
Because each unit activates only once, time can be measured directly from
the activity state of the network (Abeles, 1982; Long et al., 2010). Only units
whose gaussian fit had an R2 > 0.9 were used for the Weber analysis. For a
given noise level and network, we calculated the standard deviation (stdi)
and mean (ti) of these activation times for each unit i and found a linear fit
of these values. We then used the slope of the linear fit as the Weber coeffi-
cient, std/t (excluding units outside a 95% confidence interval of the linear
fit; see Figure 1).

4.4 Performance. Network performance was measured by a perfor-
mance index, calculated as the correlation (R2) between network activity
on a given trial and the corresponding target pattern. The overall perfor-
mance of a network was calculated as the network’s mean performance in-
dex across all trials for all trained patterns. Particularly at high noise levels
and numbers of trained targets, networks sometimes failed to complete a
feedforward sequence; thus, we also used the percentage of these failures
to quantify capacity (Figure 2B).

4.5 Network Efficiency. In graph theory, network efficiency measures
the shortest path between two nodes of a network and can be thought of
as a measure of interconnectedness of the units (Boccalettii et al., 2006).
Efficiency was calculated by determining the minimum weighted disy-
naptic excitatory and inhibitory path length between pairs of excitatory
units in the network, with weights normalized to the maximum weight.
Disynaptic connection strengths were calculated by taking matrix products
WEx ExWEx Ex for the excitatory path and WEx InhWInh Ex for the inhibitory path,
creating two NEx × NEx matrices. The path length between two units was
determined by finding the series of edges that connected the units with the
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smallest summed inverse weight. For example, if unit A is connected to unit
B with a strength of 0.2, the path length will be 5; if unit A is also connected
to unit C with a strength 0.5 and unit C connects to B with a strength of 0.5,
then the length from A to B is 4 (2 + 2). Thus, the minimum weighted path
between A and B would be through unit C. This path length was calculated
for all possible pairs in the disynaptic matrices, inverted, and normalized
by the total number of possible connections (NRec ∗ (NRec − 1)) to generate
an efficiency value. Therefore, a network with 100% maximal connections
would have an efficiency value of 1.
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