
nature neuroscience  volume 17 | number 4 | april 2014 487

n e w s  a n d  v i e w s

dynamics in computational models of recur-
rent neural networks. His work demonstrates 
that increasing the synaptic strengths between 
recurrently connected units induces a transi-
tion from a regime with little computational 
potential to one with high potential.

Ostojic1 based his simulations on a pre-
vious model of recurrent neural networks2 
composed of simple spiking units called  
integrate-and-fire neurons. A typical simula-
tion is composed of 10,000 units, 80% excitatory 
and 20% inhibitory. All units are randomly 
connected with a connection probability of 0.1, 
reflecting the experimental observation that 
the connection probability between nearby 
cortical pyramidal neurons is 0.1 to 0.2. Each 
unit also receives a large tonic input, resulting  
in spontaneous firing in the absence of any 
recurrent connections.

One of the most important parameters in 
this class of models is the connection strength 
between the units. This value, often denoted 
by J, determines the strength of both the  
excitatory and inhibitory weights in the net-
works (we are making the simplifying assump-
tion that all weights are the same). But the 
inhibitory weights are further governed by a 
factor of g. Thus, the total input to a neuron 
would be proportional to NExJ – NInhgJ, where 
J represents the strength of an excitatory syn-
apse, gJ represents the strength of an inhibi-
tory synapse, and NEx and NInh represent the 
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leaving open the possibility that granule cells 
sculpt M/T responses to specific odors (Fig. 1).  
In addition, higher frequency olfactory bulb 
oscillations, which reflect underlying network 
activity and are linked to olfactory discrimi-
nation learning, have been localized to the 
EPL15. To what extent these oscillations, and 
the activity of the underlying cell assemblies, 
are coordinated by granule cell activity versus 
that of other interneuron networks remains 
to be addressed. Perhaps the tighter control 
of behavioral state might reveal unexpected 
results in future studies, such as stronger respi-
ratory phase coupling during particular phases 
of behavioral tasks, that may reveal more about 
how granule cells influence M/T cell output. 

By showing that granule cells are strongly 
influenced by waking state, the authors have 
confirmed this network of inhibitory interneu-
rons as a viable source of dynamic informa-
tion processing in the bulb. The door is finally 
opened to empirically addressing granule cell 
function in vivo.
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useful dynamic regimes emerge in recurrent 
networks
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The internal dynamics of recurrent cortical circuits is crucial to brain function. We now learn that simply increasing 
the strengths of recurrent connections shifts neural dynamics to a potentially powerful computational regime.
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As a pianist plays, spatiotemporal patterns of 
action potentials in the brain are transformed 
into changing patterns in the musculoskeletal 
system. The resulting sounds in turn produce 
spatiotemporal patterns of neural activity in 
the auditory cortex of the listener. Similarly, 
a sequence of words on a page is the product 
of spatiotemporal patterns of neural activity 
in a writer’s brain, and those words in turn 
generate patterns of activity in the brains of 
readers. Ultimately, time-varying patterns of 
neural activity underlie just about everything 
we do. It is generally accepted that these spa-
tiotemporal patterns of activity arise in part 
from the internal dynamics of recurrent cor-
tical circuits. For this reason, considerable 
efforts have been devoted to understanding 
how patterns of activity emerge from recur-
rent neural networks. Although this work has  
generated many insights, it has also proved 
humbling. But in this issue of Nature 
Neuroscience, Ostojic1 takes an important 
step—in what will undoubtedly be a long 
walk—toward better understanding neural 

number of excitatory and inhibitory synapses, 
respectively. When g = 4, the net input will 
on average be 0 because there are four times 
more excitatory than inhibitory neurons; this 
would represent a perfectly balanced case. 
Ostojic focused on g = 5, meaning that the 
recurrent connections are dominated by inhi-
bition, but the network is nevertheless said to 
be ‘balanced’ because the ratio of excitation 
and inhibition is constant across a range of 
activity levels.

Previous studies have demonstrated that 
balanced excitatory-inhibitory networks 
exhibit a dynamic regime in which neurons 
fire irregularly in a manner that resembles the 
activity of cortical neurons during stationary 
conditions2–6. This type of pattern is referred 
to as an irregular asynchronous, or a homog-
enous asynchronous, regime (Fig. 1a). The 
irregular activity arises because excitation and 
inhibition mostly cancel each other out, but 
spikes are generated from time to time because 
of voltage fluctuations.

Ostojic1 used simulations and an analyti-
cal approach to extend these previous results.  
He found that, as synaptic strength param-
eter J is increased, there is a transition from a  
homogeneous to a heterogeneous regime  
(Fig. 1b). In this state, the firing rates vary 
substantially in time because the units become 
bursty. This burstiness resembles experi-
mentally observed responses while animals  
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Figure 1  Regimes of neural dynamics in a spiking recurrent neural network. (a) Top, the pattern of 
activity in a network with moderately strong connections generates a homogeneous regime in which 
the units spike irregularly, maintain more-or-less constant firing rates and do not burst. Each row 
represents the spiking activity of a single neuron. In this regime, the overall pattern of activity is 
fairly homogeneous. For example, the patterns at 0.5 and 0.8 s (gray bars) have a high correlation 
(0.7). Bottom, the correlation matrix shows the correlations between all possible time-bin pairs 
(20-ms Gaussian convolution). The intersection of the columns and rows at 0.5 and 0.8 s reflects the 
correlation between the two highlighted patterns (*). (b) Top, when the coupling between the neurons 
is strong, the spatiotemporal pattern of action potentials shifts to a heterogeneous regime in which 
the firing rates of units can vary substantially over time and the spiking is bursty. In this regime, the 
correlation between patterns at any two points is smaller. For example, the correlation at 0.5 and 0.8 s 
is 0.3. Bottom, the correlation matrix shows that the mean correlation is much lower over all possible 
time bins, reflecting an increase in the ability of the network to encode information.
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perform tasks and is, in one respect, surpris-
ing, as it is an emergent property of the net-
work as opposed to an intrinsic property of 
the units. The transition from a homogeneous 
to a heterogeneous regime resonates well with 
the transition described in the seminal work 
of Sompolinsky and colleagues in firing-rate 
networks7 (simulations in which the units  
do not spike).

The use of relatively simple integrate-and-
fire units along with a few simplifying assump-
tions allowed Ostojic1 to mathematically 
demonstrate that this heterogeneous regime 
is a function of the inherent instabilities of the 
system: small fluctuations lead to differences 
in the firing rate of individual neurons, which 
in turn generate further fluctuations. In the 
language of dynamical systems, in the hetero-
geneous regime, the network has eigenvalues 
larger than 1, meaning that it will not converge 
to a stable state. On the intuitive level, it is more 
difficult to understand the nature of the tran-
sition, but one possibility is that the stronger 
coupling generates longer-lasting inhibitory 
postsynaptic potentials. This longer-lasting 

inhibition, particularly of the inhibitory units, 
could provide a longer window of opportunity 
for cells to continue to spike as a result of their 
tonic activity.

Why is the transition from a homogenous 
to a heterogeneous regime of interest? Both 
are similar to experimentally observed 
regimes, but they have very different com-
putational properties. The homogeneous 
regime is well suited to transmitting infor-
mation about the firing rate of external 
inputs: given a time-varying input, neu-
rons in the network will simply increase or 
decrease their mean firing rate in relation 
to the input. But, computationally speak-
ing, this state is boring because the network 
itself is primarily functioning as a relay. In 
contrast, the complex dynamics of hetero-
geneous regimes are more interesting. This 
can be intuitively understood in terms of 
a simple computation: encoding time. The 
notion that the brain might encode time in 
the changing patterns of neural activity was 
first proposed in the context of the Marr-
Albus-Mauk model of the cerebellum8 and 

is one of the main theories of how cortical 
networks may encode time and perform 
complex time-varying computations9–11. 
This framework, however, requires that the 
pattern of activity (the neural trajectory) of 
a circuit vary appreciably over time. Look 
at the patterns of activity in a homogenous 
regime (Fig. 1a) and a heterogeneous regime 
(Fig. 1b) and imagine that you needed to use 
a pattern of a given bin to mark that point in 
time. For this to work, the population vector 
at each time bin must be different from that 
at all other time bins. Thus, the more distinct 
the patterns, the easier it will be to use the 
evolving pattern of activity to tell time. The 
correlation matrices indeed demonstrate 
that the patterns are much more distinct 
and information-rich in the heterogeneous 
versus homogeneous regime.

Ostojic1 highlights the computational poten-
tial of the heterogeneous regime by feeding two 
different time-varying inputs into a network 
in the homogeneous regime and demonstrat-
ing that the resulting spatiotemporal pattern 
of activity is low dimensional, meaning that 
the network cannot distinguish between the 
inputs. In contrast, in the heterogeneous regime, 
the same inputs generate a higher dimensional 
representation, allowing the network to dis-
criminate the inputs or to hold a memory of 
past events. This behavior is highly desirable 
in frameworks in which computations arise 
from the interaction of external inputs and the 
inherently time-varying internal state of the 
circuits10.

It must be stressed that, at this point, the 
computational potential of the network is 
hypothetical, as the network is chaotic. That 
is, if the simulation shown in Figure 1b were 
run again in the presence of a bit of noise, 
the pattern of activity would be entirely dif-
ferent, both at the level of the spike times and 
firing rates of the units. This voids the ability 
of the network to encode time or maintain 
a memory of past events. Indeed, it is well 
established that spiking recurrent networks 
are generally chaotic6,12. Thus, Ostojic’s 
results1 further highlight the need to under-
stand how to control the dynamics of spik-
ing recurrent neural networks. One potential 
way to do this is to incorporate plasticity 
into the recurrent synapses. Indeed, it has 
recently been demonstrated, using simpler 
firing-rate models, that supervised learn-
ing rules can be used to tune the recurrent 
weights so as to get the best of both worlds: 
complex heterogeneous patterns without the 
chaos13. However, the learning rule used in 
that study is not biologically plausible and is 
not directly applicable to spiking networks. 
Another potential approach takes advantage 
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of a study demonstrating that incorporat-
ing clustering into the connectivity can also 
introduce spontaneous transitions between 
different firing regimes14.

As with all computational models the net-
work studied by Ostojic1 incorporates poten-
tially important simplifications, including 
the fact that the synapses sum linearly (there 
is no saturating driving force). But perhaps 
one of the most important assumptions of 
the model is that the units are spontaneously 
active. Thus, in a sense, the burstiness is not 
an emergent property of the network because 
each unit in isolation is essentially ‘tonically 
bursting’. Rather, it may be the pattern of inhi-
bition-induced pauses in tonic activity that 
creates the heterogeneous state. In addition,  

strictly speaking, the patterns do not arise 
autonomously from the internal dynamics 
of the network as with actual cortical net-
works, in which self-perpetuating patterns of 
activity can be observed even in vitro15. Thus, 
another question for future studies will be to 
determine whether Ostojic’s results1 hold for 
excitation-dominated regimes and whether 
the network can generate heterogeneous pat-
terns of activity that are driven entirely by the 
internal dynamics.
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Go means green
Joseph T McGuire & Joseph W Kable

A simple cued-approach training procedure can bias economic choices toward specific goods. It appears to work by 
drawing overt attention toward trained items, scaling up their judged value.
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A bottle of Napa Valley Cabernet is probably 
tasty, but is it worth $70 to me? Is a fancy cup 
of coffee worth $7? As a would-be purchaser, 
I need to translate my subjective and intuitive 
valuation of a good into units of cold, hard 
cash. Even for nonmonetary choices, such as 
whether to read a book or watch TV, I need 
to be able to assess and compare the values of 
dissimilar options on a common scale.

Schonberg et al.1 describe a simple manip-
ulation that boosts the value people place 
on individual goods. The goods in their 
experiments were snack items (for example, 
a Butterfinger bar) and the manipulation  
consisted of ‘Go’ training. Pictures of 60 
different foods appeared one by one on a  
computer screen, 12 times each over the course of  
48 min. Most items just had to be viewed pas-
sively, but about a quarter were designated by the 
experimenters as ‘Go items’. Every appearance  
of a Go item was quickly followed by an auditory  
signal to make a speeded key press.

In the next stage of the study, participants 
made binary decisions, picking which of two 
snack items they would rather receive at the 
end of the experiment. In pairs consisting of a 
Go item and a control item, matched for their 
pretraining value to the participant, Go items 
were selected 60–65% of the time. Similar 

effects were apparent in a subsequent auction 
task, in which participants bid an average of 
about 12 cents more for Go items than for 
originally equivalent control items.

These are surprising results, as the 
Go-training manipulation differed markedly 
from other common strategies for modifying 
people’s preferences. Items were not associ-
ated with any new incentive, participants 
received no additional information, and the 
Go and control items did not differ in their 
familiarity or duration of exposure2. The 
manipulation does not appear to target habit-
ual responding3,4, nor does it alter the framing 
of decisions5 or the architecture of the choice 
environment6. Given the unexpectedness of 
the observed effects, it is important and com-
mendable that the researchers present multiple 
replications7, documenting the influence of 
Go training on binary choice in a total of five 
independent samples.

A potentially revealing wrinkle is that not 
all snack items were equally susceptible to the 
effects of Go training. There was a ‘rich-get-
richer’ effect across items, such that an indi-
vidual’s favorite items received the biggest 
boost. The strongest effects were seen when 
comparing initially high-valued items assigned 
to the Go versus control condition. For initially 
less-favored items, the differential effect of Go 
training was small to nonexistent.

The dependence on initial item value helps 
to argue against the uninteresting possibility 
that participants might, for some reason, have 

selected the Go items on purpose instead of 
expressing their true preferences. It also helps 
shed light on how Go training works. One way 
to make sense of this pattern of effects is to 
suppose that, instead of adding a fixed incre-
ment to an item’s subjective value, Go training 
had an effect more akin to scaling item value 
by a multiplicative factor (Fig. 1). A differen-
tial scaling or amplification of subjective value 
would have the biggest effect if both items were 
highly valued to begin with.

Amplification-like influences on subjective 
valuation have been discussed before in char-
acterizing the effects of overt visual attention. 
A recent theoretical proposal by Krajbich  
et al.8 holds that choice alternatives loom larger 
in moment-by-moment value comparisons 
if they are being visually fixated. Schonberg  
et al.1 present evidence for a direct connection  
between Go training and visual fixation. 
Eye-tracking data revealed that participants 
spent more time fixating Go items than 
control items during binary choices, even 
controlling for the fact that Go items were 
more frequently selected. This raises the pos-
sibility that overt attentional capture may 
have mediated the effect of Go training on 
expressed preferences.

In situations in which preferences shift, it is 
potentially instructive to investigate whether 
there is a corresponding shift in preference- 
related brain activity. A natural target for such 
an investigation is ventromedial prefrontal 
cortex (VMPFC). VMPFC is one in a small  
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