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Abstract--Previously, we developed a single-cell mathematical model of  the sensoo' neurons in Aplysia (Gingrich 
& Bvrne, 1985, 1987 ). This single-cell model accurate@ simulated many aspects of  empirical@ observed neuronal 
plasticity that contribute to simple forms of nonassociative and associative learning. In the present study, we 
incorporated this empirically derived adaptive element into small networks attd examined the ability Of these 
networks to simulate second-order conditioning and blocking. When the single-cell model was incorporated into 
a three-cell ;;etwork (Hawkins & Kandel, 1984), we fbltnd that cottstraints imposed by the empirical data limited 
the ability o['rtte network to simulate both second-order conditioning and blocki;~g. On the other hand, we found 
t/tat the detailed descriptions ~)[subcellalar processes unmasked phenotnena relevant to the simulation of  blocking, 
that are not captured by h'ss detailed models. We also ineorl?orated the model of  the sensory neuron into a lateral 
inhihition-O'pe network consisting o[ five ele,tettts. This network succes,silhlly simulated both second-order 
conditi(ming and blocking more readily thatt the three-cell network. 
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1. I N T R O D U C T I O N  

Computer simulations of neural networks have proven 
to be a valuable tool in helping to understand how 
assemblies of neurons may perform the wide spec- 
trum of adaptive information processing observed in 
biological systems (e.g., Bienenstock, Cooper & 
Munro, 1982; Desmond & Moore, 1988; Fukushima, 
Miyake & Ito, 1983; Gelperin, Hopfield & Tank, 
1985: Gelperin, Tank & Tesauro, 1989: Grossberg, 
1988: Grossberg & Levine, 1987; Hopfield, 1982: 
Klopf, 1988: Pearson, Finkel & Edelman, 1987: 
Sejnowski & Rosenberg, 1986; Sutton & Barto, 
1981). Many models of neural networks are com- 
posed of simple interconnected elements that take 
the weighted sum of their inputs and generate an 
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output via an activation function. The weights be- 
tween network elements change according to a 
"'learning rule." While this approach has been suc- 
cessful, a fundamental issue in neural network mod- 
elling, which has not been addressed adequately, is 
the level of detail necessary to model individual neu- 
rons and how such detail affects the global properties 
of networks. 

One way of addressing this issue is to examine the 
ability of neural networks consisting of elements 
based on the detailed properties of neurons to sim- 
ulate a well-defined task for which empirical data are 
available. One such well-defined task is classical con- 
ditioning. The parametric features of classical con- 
ditioning have been examined extensively, and thus, 
there is a large body of data with which the perform- 
ance of the network can be compared. Moreover, 
cellular mechanisms underlying some forms of as- 
sociative plasticity have been identified, and thus, it 
is becoming possible to incorporate detailed descrip- 
tions of the cellular processes involved in neuronal 
plasticity into the individual elements of the neural 
networks. 

During first-order classical conditioning (e.g., 
Mackintosh, 1974: Parlor, 1927), an animal is pre- 
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sented with repeated temporal pairings of a neutral 
conditioned stimulus (CS; e.g., a bell) and an un- 
conditioned stimulus (US: e.g.. food). The US re- 
flexively elicits an unconditioned response (UR: c 4 . ,  
salivation). During training, the animal establishes a 
relation between the CS and the US, and the CS 
comes to elicit a conditioned response (CR), which 
is similar in nature to the UR. A neural analogue of 
first-order classical conditioning has been identified 
at the sensory to motor neuron synapses in Aplys'ia 
and is termed activity-dependent neuromodulation 
(Hawkins, Abrams, Carew & Kandel, 1983: Waiters 
& Byrne, 1983). During activity-dependent neuro- 
modulation, activation of a sensory neuron (analo- 
gous to the CS) in contiguity with a unconditioned 
or reinforcing stimulus (the US) results in an en- 
hancement of the excitatory postsynaptic potential 
(EPSP; analogous to the CR) in the follower motor 
neuron. The cellular mechanisms for activity-depen- 
dent neuromodulat ion appear to emerge from the 
synergistic action of two intracellular second mes- 
senger systems, cAMP and Ca :~ (for reviews see 
Abrams & Kandel, 1988: Byrnc, 1985, 1987l. The 
reinforcing stimulus acts via a facilitatory neuron to 
increase the intracellular levels of cAMP in the sen- 
so U neurons, and in turn, cAMP leads to an cn,- 
hancement of the synaptic strength of the sensory 
neurons. The entry of Ca :> during the CS (spike 
activity in the sensory neurons) primes the US-me- 
diated increase in cAMP levels. 

Although considerable progress has been made in 
elucidating the neural basis of classical conditioning, 
little is known about the neural mechanisms respon- 
sible for higher-order features of classical condition- 
ing such as second-order conditioning (Pavlov, 1927: 
Rescorla, 1980), blocking tKamin. 1968. 1969~ and 
contingency (Rescorla. 19681. Several quantitativc 
models of small neural networks have shown that. 
in theory,  the same learning rules capable of simu- 
lating classical conditioning can simulate higher-or- 
der features of classical conditioning te.g.,  Bvrne. 
Buonomano,  Cortes ,  Patel & Baxter. 1988: Gluck 
& Thompson,  1987: Grossberg & Levine. 1987. 
Hawkins, 1989a,b: Klopf. 1988: Sutton & Barto. 
198l, 1990). A conceptual model proposed by Hawk- 
ins and Kandel (1984) is based on plastic properties 
and circuitry found in Aplvsia. They propose that the 
relatively simple rules that seem to guide simple as- 
sociative and nonassociatlve plasticity in Aplysia can 
serve as building blocks for higher-order features of 
classical conditioning, According to this hypothesis, 
higher-order features of classical conditioning emerge 
from the interactions of a few adaptive elements in 
small networks. 

In this paper, we examine the ability of networks 
consisting of elements based on the activity-depen- 
dent neuromodulat ion learning rule to simulate two 
higher-order features of classical conditioning, sec- 

end-order  conditioning and blocking. To do this. wc 
use a previously described model of the Aplysia se:!~ 
sory neurons that quantitatively simulates empirical 
data on various forms of nonassociative and associ- 
ative synaptic plasticity (Byrne & Gmgrich: 1989: 
Byrne, Gingrich & Baxter, 1989'~ (,mgrich & Bvii~.c< 
1985, 1987; Gingrich, Baxter & Byrne, t988), ()tit 
approach is to incorporate this adaptive element int<> 
plausible networks, and make a minimum ota , , ,  
sumptions regarding the propertie<, of the nonadap- 
tive elements within the circuit. Whcn the singte<~.:ll 
model was incorporated imo a ~hrce-cell network 
(Hawkins & Kandel, 1984), wc found thai the con- 
straints imposed by the empiricai data limited the 
ability of the network to simulate second-order con- 
ditioning and blocking. On the other hand, x~c lound 
that a detailed description ot: subceHutar processes 
unmasked phenomena that arc r :ii:vant to lhe sill> 
ulation of blocking, that arc no: captured b~ tcs~, 
detailed models, We also incorporated the model el  
the sensory neuron into a lateral inhibition-type he:- 
work consisting of five elements, ih{s network st~c 
cessfulty simulated both second-c, rder conditioning 
and blocking more readily than !l~v' three-cell n c l  
work. A preliminary report of these results has bccl,. 
presented (Byrnc et al.. IC)88). 

2. THREE-CELL NETWORK 

2.1 Description of the Elements 

The general properties of the adaptive element are 
illustrated in Figure 1. The equations used in this 
single-celt model are provided in the Appendix and 
have been described in detail previously (Byrne & 
Gingrich. 1989: Bvrne et al.. 1989: (.iingrich & Byrne. 
1985. 1987). The model consists oi differential equa- 
tions describing two pools of transmmer,  a releasable 
pool (P~) and a storage pool tP,), Vesicles of trans- 
mitter are mobilized from P, io P,~ via three fluxes. 
one driven by diffusion (Fol, another driven by Ca >' 
(Fc) and the third driven bx cAMP (/:~.~.~,). There 
are also differential equations describing the regu- 
lation of the levels of cAMP and Ca: . Action po- 
tentials lead to influx of Ca: (1~,), which in turn 
mediates the release of transmiuer (T~). Ca -~ influx 
also leads to an increase in the intracetlular concen- 
tration of Ca > . which modulates both mobilization 
of transmitter and synthesis of cAMP. The facitita- 
tory transmitter induces the synthesis of cAMP, which 
in turn modulates both mobilization of transmitter 
and the duration of action potentials. Pairing spike 
activity in a sensory neuron (the representation of 
the CSJ with stimulation of the facilitatory neuron 
(the representation of the US) leads to increased 
levels of cAMP. In turn. cAMP leads to the en- 
hancement of transmitter release in response to sub- 
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FIGURE 1. Components of the single-cell model that is de- 
scribed by Gingrich and Byrne (1985, 1987). Action potentials 
lead to the opening of Ca 2÷ channels and to a subsequent 
increase in the Ca2+-current (Ic,). The Ca 2+ influx leads to an 
increase the level of intracellular Ca 2+ (Ca 2. pool), which 
triggers transmitter release, mobilization of transmitter (F¢) 
from a storage (Ps) to a releasable (PR) pool, and primes the 
synthesis of cAMP produced by the facilitatory transmitter. 
FD represents diffusion of vesicles between the storage and 
the releasable pools. The US results in the release of a fa- 
cilitatory transmitter that induces the synthesis of cAMP, 
which in turn enhances mobilization of transmitter (FcAMP) and 
increases the influx of Ca 2~ during spike activity. Increased 
Ca =+ influx (Ic,) is achieved indirectly through cAMP-depen- 
dent changes in spike duration, Paired presentation of the 
CS and US results in increased levels of cAMP due to priming 
of cAMP synthesis by Ca 2+. The pairing-specific elevated 
levels of cAMP produces increased mobilization of trans- 
mitter and spike broadening beyond that produced by the 
facilitatory transmitter alone. Consequently, when subse- 
quent action potentials are elicited there is enhanced Ca 2+ 
influx and release of transmitter. The circles with arrows 
through their center represent elements of the model that 
are modulated by other variables. Unless otherwise noted 
all equations and parameters are as described in Gingrich 
and Byrne (1985, 1987; see also Appendix). 

sequent activation of the sensory neuron. This model 
quantitatively simulates empirical data on synaptic 
depression, heterosynaptic facilitation, and associa- 
tive plasticity of the sensory to motor neuron synapse 
in Aplysia (Gingrich & Byrne, 1985, 1987). Unless 
otherwise noted, all equations and parameters used 
in the present simulations are described by Gingrich 
and Byrne (1985, 1987; see also Appendix). 

The single-cell model was initially incorporated 
into a three-cell network consisting of two identical 
sensory neurons and one facilitatory neuron (Figure 
2). Activity in each modeled sensory neuron repre- 
sents a separate CS pathway (i.e., CS1 and CS2). 
The sensory neurons make excitatory connections 
with the facilitatory neuron. An important conse- 
quence of this connection is that a sensory neuron 
can take control of the facilitatory neuron as the 
strength of the sensory to facilitatory neuron con- 
nection increases. This property has important im- 
plications with respect to models of higher-order fea- 
tures of classical conditioning (Grossberg, 1971; 
Hawkins & Kandel, 1984). The function of the fa- 
cilitatory neuron is to provide a modulatory output 

in response to input from both the US and sensory 
neurons. The facilitatory neuron is the neural rep- 
resentation of the reinforcing stimulus (Grossberg, 
197l, Hawkins & Kandel, 1984). Because there are 
few experimental data on the properties of the fa- 
cilitatory neuron, it was not modeled at the same 
level of detail as the sensory neurons. As a first ap- 
proximation, we modeled the facilitatory neuron as 
a simple element that integrates postsynaptic re- 
sponses produced by each of the sensory neurons. 
The response of the postsynaptic membrane (V~ psi,) 
to released transmitter was approximated as an RC 
circuit with a time constant (TM) of 100 ms; 

dt Tv 
(l) 

where Ta represents the release of transmitter from 
the respective sensory neurons. If V~,s~, is greater 
than an assigned threshold, the facilitatory neuron 
releases a facilitatory transmitter that induces cAMP 
synthesis in each sensory neuron (see Figure 1). As 
suggested by Hawkins and Kandel (1984), an as- 
sumed property of the facilitatory neuron is that its 
output decays or accommodates as a function of time. 
Accommodation was modeled by a parameter termed 

US 

< •  Large Excitatory Input 

<~ Modifiable Synapse 

- - 4  Modulatory Synapse 

FIGURE 2. The model of the sensory neuron that is shown 
in Figure 1 was incorporated into a circuit consisting of two 
identical sensory neurons (SN1 and SN2) and a facilitatory 
neuron (FN). The sensory neurons can be activated inde- 
pendently by separate conditioned stimuli (CSs). The facil- 
itatory neuron is activated by the US and can also be acti- 
vated by a sensory neuron if the level of the input exceeds 
threshold. The facilitatory neuron is a nonplastic element 
that releases a transmitter which in turn induces the syn- 
thesis of cAMP in the sensory neurons. Sensory neuron input 
to the motor neuron (MN) and facilitatory neuron represent 
the conditioned response (CR). Since the input to the facil- 
itatory neuron and MN are identical we only simulated the 
facilitatory neuron in order to simplify the network. Although 
not illustrated the US also produces strong excitation of the 
MN. 
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Q, that varies from 1 to 0. During the time that either 
V~,esp is suprathreshold or the US is on. Q decays 
according to: 

dO - (~ 
- (2) 

dt 7',,~ 

and when V~esp falls below threshold, the facilitatory 
neuron recovers from accommodation, and (2 in- 
creases according to: 

d O  J - 0 
(3) 

dl 7],: 

where T¢, is the time constant for accommodation 
and Tee is the time constant for recovery from ac- 
commodation.  Throughout this paper, the values of 
T¢)l and Tee are set at 50 ms and 10 s, respectively. 
Thus, when the facilitatory neuron is activated by 
the US its output decays to zero within approxi- 
mately 200 ms (see Figure 4b). Within approximately 
40 s, the facilitatory neuron fully recovers from ac- 
commodation.  The output of the facilitatory neuron 
results in the synthesis of cAMP in the sensory neu- 
rons. i 

2.2 S imulat ions  o f  the  Three-Cel l  Ne twork  

The defining feature of second-order conditioning is 
that a conditioned stimulus (CS1) can come to func- 
tion as a reinforcing stimulus for the conditioning of 
a second conditioned stimulus (CS2; Parlor ,  1927: 
Rescorla, 1980). In second-order conditioning, ani- 
mals are trained in two phases. During Phase I. a 
conditioned stimulus (CS1) is paired with a US (i.e.. 
first-order conditioning of CSt). During Phase II, a 
novel conditioned stimulus (CS2) is paired with CSI 
and there is no presentation of the US (i.e., second- 
order conditioning of CS2). After training, CS2. 
which was never paired with a US, can come to elicit 
a CR. 

The training paradigms used in our simulations ol 
second-order conditioning are illustrated in Figure 
3. During Phase I of second-order conditioning (Fig- 
ure 3a), the CS1 cell (CS1 + ) is activated 280 ms (the 
optimal ISI) before the onset of the US, while the 
CS2 cell ( C S 2 - )  is activated 15 s before the onset 

' In the previous model of Gingrich and Byrne (1987), the US 
was simulated with a rectangular pulse having a duration of 200 
ms. In the present simulations, the US is an identical rectangular 
pulse but due to eqn (2) the effective US (the output of the 
facilitatory neuron) is a decaying exponential. In order for the 
effective US to produce the same level of first-order conditioning 
as in Gingrich and Byrne (1987), we adjusted the parameters in 
the equation that describes the amount of cAMP synthesis pro- 
duced by the US (eqn (A16)). Specifically, gsc was increased by 
a factor of 4.0 and K~c of the same equation by a factor of 3~7. 

ot the US. Each CS consisted oi a 4O0-ms tram oT 
11 spikes at a frequency of 25 t/z in the modeled 
sensory neurons. The duration of the US it 200 ms 
IGingrich & Byrne, t987: Walter,, & Bvrne_ 1983). 
During Phase li of second-order conditioning {[qe- 
urc 3ab. the CS2 cell is activated 280 ms bcfotc the 
onset of CS1. and no US is presemed. Phase I and 
11 consisted ot 5 and 10 trials, fc~pcctivcl}, and the 
intertrial interval is fixed at 5 nnrl Yhe control par- 
adi~zm for second-order conditionin~ is similar m the 
experimental paradigm cxcepl thai during Phase i. 
the CS1 is presented in an unpaired fashion wittt the 
US (Figure 3bt. 

In our simulations, the threshold of the facilitatory 
neuron proved to be a critical parameter (see below 1. 
With low thresholds, the network slmulated second- 
order conditioning, but not blockine. Conversely 
with a high threshold, the network simulated a small 
degree of partial blocking, but not second-order con- 
ditioning. A simulation of second-order conditiomng 
with a low threshold facilitator~ neuron is illustrated 
in Figure 4. During Phase I tTrials 1-5). the EPSPs 
produced in the facilitatorx neuron by both the CSI 
and CS2 cells (SN1 and SN2. respectively/ show 
increases in strength (Figure 4a~ t'he increase in 
strength of the EPSP produced Iw the CS2 cell is duc 
to ~ nonassoclative effect (the neural equivalent of 
sensmzationl. The CSI cell, which was paired with 
the US. displays a larger increase than that observed 
in the CS2 cell (first-order conditioning of CS 1 ), Du> 
ing Phase 11 IFigure 4a. Trials h l~i, the prcsenta- 
tion of the US is terminated and activity m the C52 
cell is paired with activity in tlw CS1 celt. During 
Phase 11. the strength of the ($2  cell is cnhanccd. 
Towards the end of Phase tl ,tic ~u'engths of both 
the CS1 anti CS2 cells begin m cxtmguish. /ks illus- 
trated bv thc control paradigm tdotted line ~. it the 
CSt cell is unpaired with the l IS during Phase [. thcn 
there is no enhancement ot streJ~ath in the CS2 cell 
during Phase I1 

Chan~es m the synaptic outpm~ o~ the two sensory 
neurons and the facilitatorv neuron during the sim- 
ulatkm of second-order conditioning arc illustrated 
in Figure 4b Initially, the EPSPs produced b~ the 
CSI cell or the CS2 cell are small and subthreshold 
for acnvation of the facilitator~ neuron, which ts ac- 
tivated onl\ bv the US (Figure 4b. Trial 1}. By tl~e 
end of Phase I {Figure 4b. Trial 5). however, the 
EPSP produced by the CS1 cell is large enough to 
activate the facilitatorv neuron. CSt can now func- 
uon as a reinforcing stimulus for the conditioning of 
CS2 by activating the facilitatorv neuron (Figure 4b. 
Trial 61. Consequently, the magnitude of  EPSP2 in- 
creases as activity m the CS2 celt is paired with ac- 
tivity in the CS1 cell {Figure 4b, Trial 10). Thus, 
second-order conditioning in fhis network results 
from the ability of a previousl~ conditioned CS to 
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Phase I 
(Training Trials 1-5) 

A. Second-order  Conditioning 

15 sec ,j 
280 msec 

US . . . . . . . . . . . . . . .  ~ c  

CS 1 ............... 
400 msec 

CS2 J t 
400 msec 

Phase II 
(Training Tdals 6-15) 

280 msec 

f t 

B. Control 

15sec i . . ~  280 msec 
~ 1 2  sec .- 

US L_ 

cs  1 . . - . J  t I - - " " - - I  

CS2 d L . .  

FIGURE 3. Training paradigms used in the simulations of second-order conditioning and the control for second-order con- 
ditioning. (a) During Phase I of second-order conditioning, CS1 (spike activity in SN1) is temporally paired with the US (ISI 
of 280 ms), while CS2 is presented in a unpaired fashion (ISI of 15 s). During Phase II, CS2 is paired with CS1 in the absence 
of any US. (b) The control paradigm for second-order conditioning is similar to the experimental paradigm except that CS1 
is unpaired with the US during Phase I (ISI of 12 s). Since the adaptive elements used in our simulations exhibit significant 
nonassociative plasticity, equivalent to sensitization and habituation, our results are easier to interpret when CS2 is presented 
during Phase I, but unpaired with the US. The results remain unchanged when we use controls in which CS2 is not activated 
during Phase I. 

take control of the facilitatory neuron and serve as 
a reinforcer for the conditioning of a second CS 
(Grossbcrg, 1971: Hawkins & Kandel, 1984). 

Blocking is a higher-order feature of classical con- 
ditioning that emphasizes the predictive value of the 
CS in relation to the US (Kamin, 1968, 1969). A 
blocking paradigm consists of two phases of training. 
During Phase I, a conditioned stimulus (CS1) is tem- 
porally paired with the US. During Phase II, CS1 
and a second conditioned stimulus (CS2) are pre- 
sented simultaneously (a compound stimulus: CS1/ 
CS2) and paired with the US. With training, CS1 
continues to elicit a conditioned response, while CS2, 
produces little or no conditioned response, even 
though it was temporally paired with a US. Thus, 
preconditioning of CS1 "'blocks" the conditioning of 
the CS2 component of a CS1/CS2 compound from 
conditioning. 

The training paradigms used in our simulations of 
blocking are illustrated in Figure 5. During Phase I, 
the CS1 is paired with the US (CS1 + ), while CS2 is 
presented in an unpaired fashion (CS2 - ; Figure 5a). 
During Phase II, both CS cells are activated simul- 
taneously, 280 ms before onset of the US. The con- 
trol paradigm (Figure 5b) is similar to the experi- 
mental paradigm except that during Phase I, both 
CS1 and CS2 are presented in an unpaired fashion 
with the US. 

With a high threshold of the facilitatory neuron, 
the three-cell network was able to simulate partial 
blocking (Figure 6). During Phase I (Figure 6a, Trials 
1-5). the CS1 cell (SN1) exhibits first-order condi- 

tioning and the CS2 cell (SN2) exhibits sensitization. 
During Phase 11 (Figure 6a, Trials 6-15), the CS2 
cell initially exhibits less conditioning than the con- 
trol (dotted line), which represents a small degree 
of partial blocking. Figure 6b illustrates the outputs 
of the sensory neurons and facilitatory neuron after 
various periods of training. Initially, the EPSPs pro- 
duced by SN 1 and SN2 are weak, and thus, neither 
CS cell is strong enough to activate the facilitatory 
neuron, which is only activated by the US (Figure 
6b, Trial 1). The decrease in the release of facilitatory 
transmitter (FN Output) during the presentation of 
the US represents accommodation (eqn (2)). The 
facilitatory neuron recovers completely from accom- 
modation within an intertrial interval. After first- 
order conditioning, the EPSP produced by CS1, while 
enhanced, is still subthreshold for activation of the 
facilitatory neuron (Figure 6b, Trial 5). During Trial 
6, both CS1 and CS2 cells are activated simultane- 
ously and their summed EPSPs are able to activate 
the facilitatory neuron. Due to the incomplete re- 
covery from accommodation, the output of the fa- 
cilitatory neuron in response to the US is decreased. 
Thus, the CS2 cell undergoes less conditioning than 
it would have if CS1 had not been preconditioned 
(control trace in Figure 6a). In addition, because the 
compound CS activates the facilitatory neuron, the 
effective ISI has shifted from 280 ms to zero. A 0-s 
ISI is less effective because the Ca ~ levels in a cell 
are relatively low during the time of activity in the 
facilitatory neuron. 

As mentioned above, the threshold of the facili- 
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A. Second-order Conditioning (With Low FN Threshold) 

Phase I Phase II 
I - -  ~ ~ i  

3O0 J [ i  

• SN 1 

/ Sensitization 

100 m// , ~ control, , 

5 10 15 

Training Trials 

B. Phase I 

US 
FN 
Output 

CS- 

EPSP 1 

CS 2 

EPSP 2 

Trial i Trial 5 
~ L  . . . . . . .  

- - 1  . . . . . .  - -  L._ 

t , ~  

Phase II 
Trial 6 Trial 10 

US 
F N  I ~  

Output . . . . . . . . . . . . . . . . . . .  

C S "  , . . . . . . . . . . . .  

EpsP~ f ~  . . . . . . .  2 ~  . . . . . .  

CS 2 _ J - - I  . - . . . .  _ . . . .  

EPSP 2 - -  - - ' % ' - -  . . . .  J " "  . . . . . . . .  

FIGURE 4. Simulations of second-order conditioning with a 
low threshold of the fecilitatory neuron. (a) The baseline val- 
ues of the EPSPs produced by theCS cells were normalized 
to 100%. During first-order conditioning (Phase I, Trials 1-  
5), both the CSl cell (SN1) and CS2 cell (SN2) show increases 
in strength. The Increase in strength observed in the CS2 
cell is due to a nonassociative effect (sensitization). The CSl 
cell, which was paired with the US, is enhanced to a greater 
extent. During Phase II (Trials 6-15), the EPSPs produced 
by CS2 exhibited an Increase in strength due to second-order 
conditioning. During Phase l, of the control paradigm, both 
CS cells exhibit a noneseocistive Increase in strength. Phase 
II of the control paradigm (dotted line) illustrates that without 
preconditioning of CSl no associative plasticity is observed 
in the CS2 cell. (b) The outputs of the sensory neurons and 
facilltstory neuron are plotted at various points during train- 
ing. Initially, neither CS cell is strong enough to activate the 
fecilitstory neuron, which is activated only by the US (Trial 
1). By the end of first-order conditioning, CSl is able to ac- 
tivate the facilitstory neuron (Trial 5). The CSl cell can now 
function as a reinforcing stimulus by activating the fecllita- 
tory neuron and condition the CS2 cell (Trial 6). Towardsthe 
end of Phase II, the associative plasticity in both cells begins 
to extinguish (Trial 10). Note that the duration of the CS out- 
lasts the actual durstion of theEPSPs. This is due to synaptic 
depression. The threshold of the fecilitstory neuron was 
1100. 

tatory neuron is a critical parameter for simulating 
second-order conditioning and blocking. The ex- 
amples given (Figures 4 and 6) used different thresh- 
olds. each of which was selected for either maximal 
second-order conditioning or blocking. The ability 

of the three-cell network to simulalc both second- 
order conditioning and blocking as a function of the 
threshold of the facilitatory neuron is illustrated in 
Figure 7 No single threshold permitted reasonable 
simulations of both second-order conditioning and 
blocking. Lower thresholds permitted second-order 
conditioning because the CS1 .~ cell ~ould eat silv ac- 
tivate the facilitatorv neuron, and rims provide rc.- 
inforcement for conditioning ol the ~-'$2 cell (F'igurc 
4). Blocking, on the other hand. ~v~uld not be sim- 
ulated with a low threshold, since broth the CS[ - 
( '$2 compond {experimental~ ,:rod the (.'5;1 
CS2- compound (control)could ,~ctlvate the lacfi- 
itatorv neuron. Thus. the CS2 celt during both the 
control and experimental blocking paradigms exhib- 
ited the same degree of conditionine t-hgher thresh- 
olds. within a range, improve the dcarce of blocking. 
This improvement occurs because the CSI - ( '52 
compound activates the facilmm)rv neuron, partially 
shifting its activit~ to a time that is less effective for 
inducing associative plasticity m the ( '$2. cell. while 
the CSI CS2 compound of me control will re- 
duce little or no shift. Second-order conditioning. 
however ~s not simulated when the tacilitatorv neu- 
ron has a high threshold because t S t  ,> iltll able 
n~ actwate the facilitatorv neuron ~c.~z., Figure (m. 
Trial 5). 

Thus. bv implementing our si~etc-cell model ol 
an A p & s i a  sensory neuron into ,, neural network 
suggested bv ttawkins and Kandei ~/984). it was pos- 
sine lo simulate either second-order conditioning or 
a small degree of blocking; depending on the thresh- 
old of the facilitator~ neuron. Both phenomena. 
however, could not be simulated adequately with the 
same threshold of the facilitatorv ~euron. 

An analysis of the above results revealed that there 
are at least three constraints that must be satisfied 
m order to simulate both second-order conditioning 
and complete blocking with this type of network, 

1. N o  cond i t i on ing  s h o u l d  occur  w u h  an ISI  o f  zero  

seconds .  With the Hawkins-Kandel  hypothesis, the 
degree of blocking is intrinsically related to the tSI 
function and the accommodation of the facilitator\ 
neuron. In order to obtain complete blocking there 
can be no overlap between activity of the facilitatorv 
neuron and a functional associative trace within the 
CS2-- cell. Thus. either the facilitatory neuron must 
accommodate very rapidly, or the minimal functional 
[SI must be relatively large. Complete blocking can 
occur if the CSI - / C S 2  compound fully activates 
the facititatory neuron in order Io produce complete 
accommodation, and during the time it takes the 
facilitatory neuron to accommodate,  the CS2- cell 
is not in a state receptive to assocmtive plasticity. 
This relation was also stressed bx Gtuck and Thomp- 
son (1987). 
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c 8 2  ~ . .  I I 

FIGURE 5. Training paradigms used in the simulations of blocking and the control for blocking. (a) Blocking paradigm. During 
Phase I of blocking, CS1 is paired with the US (ISI of 280 ms) and CS2 is presented in an unpaired fashion with the US (ISI 
of 15 s). During Phase II, both CS1 and CS2 are presented simultaneously and paired with the US. (b) The control paradigm 
for blocking is similar to the experimental paradigm except that during Phase I CS1 is unpaired with the US (ISI of 12 s). 

2. The strength of  a CS + cell should be at least twice 
as large as that of  a C S -  cell. To obtain complete 
blocking, the CS1 + / C S 2  - compound must shift the 
time window of activation of the facilitatory neuron, 
but the C S 1 - / C S 2 -  compound of the control 
should not. If the first compound stimulus of a con- 
trol simulation ( C S 1 - / C S 2 - )  activates the facili- 
tatory neuron, a type of "pseudo-blocking" is ob- 
tained in which the CS2 cell would not condition with 
either a CS1 + /CS2  - compound of a blocking sim- 
ulation or with the CS1 - / C S 2  - compound of a con- 
trol simulation. In addition, the CS1 + must be able 
to activate the facilitatory neuron in order to obtain 
second-order conditioning. Thus, in order for the 
three-cell network to account for both second-order 
conditioning and blocking several conditions rele- 
vant to the strengths of the CSs and the threshold of 
the facilitatory neuron must be satisfied: (i) the CS1 + / 
C S 2 -  should strongly activate the facilitatory neu- 
ron: (ii) the CS1 - / C S 2 -  compound should not ac- 
tivate the facilitatory neuron; (iii) the CS1 + stimuli 
should at least partially activate the facilitatory neu- 
ron. These three conditions imply that the strength 
of a CS1 + cell must be at least twice as great as the 
strength of a C S 2 -  ceil, and that the threshold of 
the facilitatory neuron must lie between the strength 
of CSI + and CS1 + / C S 2 - .  

3. The CS 1 + cell should be able to strongly activate 
the facilitatory neuron. A further factor particular to 
our empirically derived model,  was the depletion of 
transmitter from the sensory neuron. In the train of 

eleven spikes that constituted the CS, the first one 
or two spikes of the CS1 + cell would release enough 
transmitter to reach the threshold of the facilitatory 
neuron, but, due to depletion of transmitter,  the ef- 
fects of the later spikes were relatively weak (see 
EPSPs and output of the facilitatory neuron in Figure 
4b, Trial 5). Thus, it proved difficult for a sensory 
neuron to maximally activate the facilitatory neuron 
for a period of time of greater than about 100 ms. 

3. THREE-CELL NETWORK WITH A 
MODIFIED SINGLE-CELL MODEL OF A 

SENSORY NEURON 

3.1 Modifications of Element Properties 

We next modified our original models of the sensory 
and facilitatory neurons in order to satisfy the above 
constraints. Although the modifications described 
below are physiologically plausible, it should be em- 
phasized that they are not based on experimental  
data. 

1. Threshold of  Ca > concentration for associative 
plasticity. Our original model exhibited an optimal 
ISI of 280 ms and some conditioning at an ISI of 
0 s (see Figure 8). We modified the properties of the 
sensory neuron by assuming that Ca > must reach a 
critical concentration before it can prime cAMP syn- 
thesis and thus induce associative plasticity. We as- 
sumed that Ca > must reach a level that is achieved 
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FIGURE 6. Simulation of blocking with a high threshold of 
the fasilitatory neuron. (a) During Phase I (Trials 1-5), the 
CSl cell exhibits first-order conditioning while the CS2 cell 
exhibits noneesoclative plasticity (sensitization). During 
Phase Ii (Trials 6-15), the CS2 cell exhibits slightly less con- 
dltlonlng than the control (dotted line), representing a small 
degree of partial blocking. (b) The output of the sensory 
neurons and fecllitatory neuron are shown during different 
training trials. Initially, neither CS cell is strong enough to 
activate the facilltatory neuron, which is activated only by 
the US (Trial 1). After first,order conditioning the EPSP pro- 
duced by CSl is still subthreshold for activation of the fa- 
cilRatory neuron (Trial 5), During Trial 6, :both the CSl and 
CS2 cells are activated simultaneously and their summed 
output is able to activate the facilitatory neuron and induce 
its partial accommodation. Thus, the factlitatory neuron can 
only be partially activated when the US is presented. Since, 
the facllltstory neuron output in response to the actual US 
is decreased, less associative plasticity occurs in the CS2 
cell. The threshold of the facilitatory neuron was 1500. 

by a naive cell as a result of approximately 300 ms 
of stimulation.Z As can be seen in Figure 8 this mod- 
ification shifted the rising phase of the ISI function 
250 ms to the right, eliminating conditioning with an 
ISI of 0 s. 
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FIGURE 7. D e g r e e  of second-order conditioning and b l o c k ,  
ing as a function of threshold of the facititatory neuron. Sec- 
ond-order conditioning is measured as the percentage of 
maximum first-order conditioning (e.g. ,  F i gu re  4a).  Blocking 
is measured as the difference of control and experimental 
conditioning in relation to the controlat Trial 7 (see Figure 
6a). Thus, 0% blocking indicates there was no difference 
between the conditioning Of the ca2 cell in the control and 
experimental simulations, whereas 100% b i l k i n g  would in- 
dicete that theCS2 cell did not exhibit any ~ndittoning (i.e., 
complete blocking). 

constant for C a e - d e p e n d e n t  cAMP synthesis was 
increased and the constant for Cae*-independent 
cAMP synthesis was decreased. ~ These parameter  
modifications increased the difference in strength be- 
tween a C S 1 -  and a C S 2 -  cell bx increasing the 
degree of associative plasticity and decreasing non- 
assocmtive plasticity. 

3 EnhancedcAMP-dependentmobitization oftrans- 
miner. In our initial simulations, when a C S 1 -  cell 
was stimulated, all spikes following the third or fourth 
released little t r ansmmer  due to depletion. In order 
to decrease depletion of transmitter,  we enhanced 
cAMP-dependent  mobilization of t ransmit ter  from 
the storage to releasable poo l?  In addition, the du- 
ration of the CS was also increased from 1 l spikes 
(400 ms) to 21 spikes (800 ms) to further enhance 
associative plasticity. 

4. Burst-like property in facilitatorv neuron. As men- 
tioned above,  one of the reasons we failed to obtain 
reasonable blocking was that the CS1 + / C S 2  - com- 
pound was not able to maintain activity in the facit- 
itatory neuron. To overcome this limitation, we in- 
corporated a burst-like property in the facilitatory 
neuron. Specifically, the duration of activity in the 

2. lncrease in magnitude of associative plasticity. The 

: The Co variable (eqn (A7)) must attain the value of 0.6555 
before associative plasticity occurred. 

l'his was done by decreasing the K, constant from 160() to 
6U0 and increasing the KL~ from 5360 to 9900 Isee Appendix) 

This was done by adding the term: g 10 ~ - C~A~p to the F\ 
equation of the original model (see Appendi×) and by increasin~ 
the gain constant of the F~Avp equatio~ (K~,, cqn (At2'H from 
~.  10 ' r o g .  1/I . 
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FIGURE 8. Effects of the interstimulus intervals on first-order 
conditioning of original and modified single-cell models. First- 
order conditioning was plotted as percentage of maximal 
conditioning (i.e., conditioning at the optimal ISI). Introduc- 
tion of a Ca 2÷ threshold for associative plasticity in the mod- 
ified single-cell model shifted the ISI function to the right 
preventing associative plasticity at an ISI of 0 s. 

facilitatory neuron was made a linear function of the 
time period that the input of the facilitatory neuron 
remained above threshold. ~ With this modification, 
the facilitatorv neuron fires for a time proportional 
to the period V~j,sv is above threshold. 

The above assumptions were made with the ob- 
jective of obtaining complete blocking and second- 
order conditioning with the three-cell network. We 
chose to focus on complete blocking in order to ob- 
tain a systematic analysis of blocking. A model that 
simulates complete blocking can simulate partial 
blocking, while the converse is not true. Experimen- 
tal data of conditioned suppression in rats shows both 
partial and complete blocking (e.g., Kamin, 1968; 
Mackintosh, t975). 

3.2 Simulations of Three-Cell Network with 
Modified Elements 

When the three-cell network was simulated with the 
above modifications, the following changes were ob- 
served in relation to first-order conditioning: (1) there 
was no conditioning with a US-US interval of 0 s, 
and the optimal 1SI was shifted from 280 ms to ap- 
proximately 500 ms (Figure 8); (2) the model did not 
continue to quantitatively simulate the empirical data 
on associative plasticity (Gingrich & Byrne, 1987; 
Walters & Byrne, 1983) because the ratio of asso- 
ciative to nonassociative plasticity was increased 
(e.g., Figure 9a); (3) the influence of the ISI on the 
shape of the acquisition curve during first-order con- 
ditioning was more pronounced. Nonoptimal ISis 

The duration of activity in the facilitatory neuron was equal 
to the time that the input remained above threshold multiplied 
by 1.5. 

tended to display sigmoid acquisition functions, 
whereas optimal ISis displayed negatively acceler- 
ating acquisition functions. The simulations de- 
scribed in this section were carried out with an ISI 
of 480 ms, a value that resulted in a negatively ac- 
celerating acquisition curve. 

The three-cell network that incorporated the mod- 
ified single-cell model was able to simulate both sec- 
ond-order conditioning and complete blocking with 
a single threshold of the facilitatory neuron. Figure 
9 illustrates the simulation of second-order condi- 
tioning. During Phase I (Figure 9a, Trials 1-5). the 
CSI cell (SNI) exhibits first-order conditioning and 
the CS2 cell exhibits a small degree of sensitization. 
During Phase 11 (Figure 9a, Trials 5-16), the strength 
of the CS2 cell increases as a result of second-order 
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FIGURE 9. Simulation of second-order conditioning with the 
modified three-cell network. (a) During first-order condition- 
ing (Phase I, Trials 1-5), the CS1 cell exhibits an increase in 
strength which is much greater than that in the original sin- 
gle-cell model (compare with Figure 4a). During Phase II (Trials 
6-15), the CS2 cell exhibits second-order conditioning. (b) 
The outputs of the sensory neurons and facilitatory neuron 
are plotted at various points during training. Initially, the 
EPSPs from neither CS cell are large enough to activate the 
facilitatory neuron, which is activated only by the US (Trial 
1). By the end of first-order conditioning, CS1 is able to strongly 
activate the facilitatory neuron (Trial 5), and thus function as 
a reinforcing stimulus for conditioning of the CS2 cell (Trial 
6). The threshold of the facilitatory neuron was 2000. 
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conditioning. The EPSPs produced by the sensor~ 
neurons and the output of the facilitatory neuron are 
illustrated in Figure 9b. By the end of Phase I. the 
EPSP produced by the CS1 cell is strong enough to 
activate the facilitatory neuron, and thus the CSI 
celt is able to serve as a reinforcing stimulus for the 
conditioning of CS2 during Phase I1 (Figure 9b. Trial 
6). Note that during Phase II of second-order con-. 
ditioning, the associative strength of the CS2 celt 
becomes sufficiently large to activate the facilitator~ 
neuron (Figure 9b, Trial 10). Consequently, the CS2 
cell receives some "self-reinforcement" and ,ts ex- 
tinction is slowed (Figure 9a). Since CS2 activates 
the facilitatory neuron and causes its accommoda- 
tion, the CS1 cell receives less reinforcement (Figure 
9b, Trial 10) and its associative strength extinguishes 
more rapidly (Figure 9a). 

Figure 10 illustrates a simulation of blocking with 
the same threshold of the facilitatory neuron that 
was used in the simulation of second-order condi- 
tioning (Figure 9), During Phase I (Figure 10a, Trials 
1-5), the CSI cell (SN1) exhibits first-order condi- 
tioning and the CS2 cell exhibits a small degree ot 
sensitization. During Phase II (Figure 10a, Trials ~ 
15), CS2 exhibits no conditioning. Thus, the CS2 cell 
exhibited complete blocking. In contrast, during the 
control paradigm (dotted line) each cell conditioned 
to approximately 50% of the strength observed dur- 
ing first-order conditioning. Figure 10b illustrates the 
output of the sensory neurons and the facititatorv 
neuron during various periods of training. Initially. 
the EPSPs produced by either CS cell are not strong 
enough to activate the facilitatory neuron+ which is 
activated only by the US (Figure 10b, Trial l). After 
first-order conditioning, the EPSP produced by the 
CS1 cell is strong enough to activate the facilitatorv 
neuron, but not strong enough to fully accommodate 
it (Figure 6b, Trial 5). During Phase 11 (Figure 10b. 
Trial 6), the summed input from SN1 and SN2 ac- 
tivates the facilitatory neuron. Due to the accom- 
modation of the facilitatory neuron produced bv the 
compound CS, the output of the facilitatory neuron 
in response to the actual US is insignificant. Thus. 
the CS2 cell essentially receives a 0-s pairing with 
the reinforcement, which does not produce any as- 
sociative plasticity in the CS2 cell. If, however, the 
onset of CS2 precedes CS1 during Phase 1I, blocking 
does not occur. In this paradigm, the CS2 is not 
receiving a reinforcement at a 0-s ISI, and can un- 
dergo associative plasticity (simulations not shown), 
This phenomenon has been described by Kehoe, 
Schrueurs and Graham (1987). 

An unexpected result was that this model was able 
to simulate complete blocking with a negatively ac- 
celerating acquisition function. As shown by Gluck 
and Thompson (1987), a difficult aspect of simulating 
complete blocking is that the C S 2 -  cell should not 
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FIGURE 10. Simulation of blocking with the moditiedthrse- 
cell network. (a) During Phase I, CSI e ~  first-order con- 
ditioning. During Phase II, CS2 exhlbi~s complete blocking 
(i.e., the CS2 cell does not exhibit any increase In strength). 
The output of each sensory neuron of thecontrol paradigm 
(dotted line) exhibits conditioning and reaches an asymptote 
at approximately 50% of that observed during first-order con- 
ditioning. Thus, the summed strength of both cells Is ap- 
proximately equal to that observed In fWst-order condition- 
ing. (b) In contrast to the previous model (Figure 6), it can 
be seen that during Trial 6 the CS1 + / C S -  compound pro- 
duces full accommodation of the facllltatory neuron. Con- 
sequently, the US does not significantly activate the faclli. 
tatory neuron. The CS2 cell does not ~ any condl~nlng 
because it is activated simultaneously with the facllltatory 
neuron (an effective ISl of zero). The CS1 cell however, under- 
goes associative plasticity because it enters a state receptive 
to sseociatlve plasticity sooner due toquicker influx of Ca 2+. 
The threshold of the facilitatory neuron was 2000. 

undergo any associative plasticity during Phase 11. 
but the CS1 + cell must undergo associative plasticity 
in order to counterbalance extinction (see also Dis- 
cussion). This property is achieved in our simulations 
because the CS + cell has broader action potentials~ 
and thus a more rapid influx of Ca2 + . This permits  
the CS1 + cell to reach its critical concentration of 
Ca 2+ , within a time period that the facilitatory neu- 
ron is still activel In contrast, the CS2 Cell, which 
has not been conditioned, :has narrow spikes:, and 
thus, it takes a longer period of time during_the CS 
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to reach the critical levels of Ca -'+ necessary for as- 
sociative plasticity. Indeed, the C S 2 -  cell requires 
approximately 300 ms to reach its critical Ca z+ con- 
centration, and by that time the facilitatory neuron 
is inactive (e.g., Figure 10b, Trial 6). Consequently, 
at the time the facilitatory neuron is activated by the 
CS1 + / C S 2 -  compound during the Phase II of 
blocking, no conditioning of a C S 2 -  occurs. 

An interesting finding that emerged from the sim- 
ulation of complete blocking with the modified three- 
cell network is that during Phase I1 the actual US 
had no functional influence, since the compound CS 
resulted in complete accommodation of the facili- 
tatory neuron (e.g., Figure 10b, Trial 6). A corollary 
ofthisis  that the CS1 + o faCS1  + / C S 2 -  compound 
does not extinguish in the absence of a US: a feature 
that is biologically implausible. With minor changes 
of parameter values (such as decreasing the magni- 
tude of Ca -'~ -dependent cAMP synthesis) this model 
can simulate arbitrarily good partial blocking in which 
extinction is observed. Partial blocking occurs when 
the CS1 + / C S 2 -  compound does not fully accom- 
modate the facilitatory neuron. 

It is interesting to note that in the original single- 
cell model described by Gingrich and Byrne (1987) 
the asymptote of the acquisition curve resulted from 
the saturation of intracellular Ca -'+ concentrations, 
which caused cAMP to reach a steady state. As noted 
by Hawkins (1989a,b), with the introduction of con- 
nections between the sensory neurons and facilita- 
tory neuron, and accommodation of the latter, an 
asymptote is reached due to a shift in the time period 
of actiw~tion of the facilitatory neuron. That is, as 
the strength of the CS1 + increases with condition- 
ing, the facilitatory neuron is activated within a time 
period closer to the onset of the CS. On one hand, 
the shift in facilitatory neuron activity causes a deac- 
celeration of the acquisition curve, since as the onsets 
of the CS and the US become closer there is less 
associative plasticity. On the other hand, as training 
progresses, the levels of cAMP are increased, and 
action potentials are broadened, thus increasing the 
rate at which Ca e+ accumulates. This process tends 
to create a positive feedback, such that with each 
trial there is an increase in the influx of Ca e + and an 
increase in synthesis of cAMP. Whichever of these 
antagonistic processes is more pronounced deter- 
mines whether the acquisition function is a sigmoidal 
or a negatively accelerating curve. In our simulations 
with the modified three-cell network, nonoptimal ISis 
(either long or short) produced little conditioning on 
the first trial of first-order conditioning, thus the shift 
in facilitatory neuron activity would be relatively small 
or nonexistent, resulting in a sigmoid function. Con- 
ditioning with an optimal ISI, however, exhibited a 
negatively accelerating acquisition function because 
the first trial of first-order conditioning was enough 
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to cause a significant temporal shift in the activation 
of the facilitatory neuron. A further prediction of 
these simulations is that the ISI functions can be state 
dependent;  cells that have previously received re- 
inforcement will have different time courses of Ca 2+ 
influx, and thus different optimal ISis. 

4. LATERAL INHIBITION MODEL 

4.1 Circuit Description 

In an attempt to develop a network that simulated 
both second-order conditioning and blocking, and 
retained the ability to simulate the available empir- 
ical data (Gingrich & Byrne, 1985, 1987), we con- 
structed a network in which inhibitory neurons were 
added in a lateral inhibition-type architecture (Figure 
11). In this circuit, each model sensory neuron ex- 
cites an inhibitory neuron (IN) which in turn inhibits 
the neighboring sensory neuron. 

As a first step, we assumed that the inhibitory 
neurons inhibited the associative plasticity in the sen- 
sory neurons. This is a hypothetical mechanism that 
could occur at numerous loci, such as blocking the 
influx of Ca 2+ or blocking the Ca 2+ priming com- 
ponent of cAMP synthesis. We assumed that activity 
of the inhibitory neuron transiently blocked further 
Ca 2+ priming of cAMP synthesis in the sensory neu- 
ron, but not priming that results from Ca 2+ present 
before the onset of activity of the inhibitory neuron. 
We also assumed that the inhibitory neuron had a 
burst-like property. The duration of activity in the 
inhibitory neuron was a function of the amount of 
time its input remained above threshold/ '  The output 
of the inhibitory neuron was constant during its ac- 
tivation. 

The lateral inhibition network was implemented 
with the original single-cell model of the sensory neu- 
ron (see section 2 and Appendix). The addition of 
the inhibitory neurons did not impair the ability of 
the network to simulate the empirical data on non- 
associative and associative plasticity. The thresholds 
of the inhibitory neurons were set above the strength 
of a C S 2 -  cell, and below the strength of a CS1 +.  
Consequently, only conditioned cells were capable 
of activating their inhibitory neurons and inducing 
lateral inhibition of the neighboring sensory neuron. 
The training paradigms were identical to those de- 
scribed for the original three-cell network (Figures 
3 and 5). 

" The duration of activity in the inhibitory neuron was equal 
to the time that the input remained above threshold multiplied 
by 15. 
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FIGURE 11. Sketch of the lateral inhibition-type network. The 
sensory neurons and fecilitatory neuron are the same as 
were used in the simulettons of the three-cell network with 
the original single-cell model. The inhibitory neurons (IN) are 
nonplastlc elements that when active inhibit associative 
plasticity in the sensory neurons. 

4.2 Simulations of Lateral Inhibition Network 

As shown in Figures 12 and 13. the lateral inhibition 
network was capable of simulating both second-orde r 
conditioning and blocking. In contrast to the modi- 
fied three-cell network, the lateral inhibition net- 
work was also able to quantitatively simulate the 
available empirical data on nonassociative and as- 
sociative plasticity (Gingrich & Byrne. 1985, 1987). 

Figure 12 illustrates the simulations of second- 
order conditioning which is achieved in a similar 
manner  as in the previous networks (Figures 4 and 
9). As a result of first-order conditioning (Figure 12a. 
Phase I), the CS1 cell is able to elicit activity in the 
facilitatory neuron and its inhibitory neuron (Figure 
12b. Trial 5). Therefore .  CS1 is able to function as 
reinforcing stimulus for the conditioning of the CS2 
cell (Figure 12a. Phase II). During Phase II. the in- 
flux of Ca 2+ into the CS2 cell occurs before onset of 
activity in inhibitory neuron 1. Therefore.  second- 
order conditioning of the CS2 cell is not prevented 
by inhibitory neuron 1. because the associative plas- 
ticity observed in the CS2 cell results from the Ca'- 
influx that occurred before the activation of inhibi- 
tory neuron 1 by the CS1 cell. 

Figure 13a illustrates a simulation of blocking with 
the lateral inhibition network. At the end of Phase 
I. CS1 is able to activate both the facilitatory neuron 
and its inhibitory neuron (Figure 13b. Trial 5). As 
the compound CS1/CS2 presentations are paired with 
the US during Phase II. the CS1 cell activates its 
inhibitory neuron which in turn inhibits associative 
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plasticity in the CS2 cell. Essential1),, an inhibitory 
neuron detects that a CS cell has been conditioned, 
and inhibits associative plasticity iii the other cell. A 
small degree of associative plasticity occurs in the 
CS2 cell, however, from the influx ol Ca:! ~ that takes 
place during the brief time necessa~', to t  the CS l celt 
to activate inhibitory neuron l. The mechanism for 
blocking obtained with the lateral inhibition network 
is quite different from that of the th~ec,cell network. 
Specifically, it does not rely on a shift in the lime 
window of activation of the facilita~ory neuron (al- 
though a shift does occur), but on the activatiOn ot 
an inhibitory neuron that blocks ItH-ther associatixc 
plasticity. This lateral inhibition nelwork is formally 
similar to a model previously described by, Grossberg 
and i,evine (1987). 
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FIGURE 12. Simulation of second-order conditioning with the 
lateral inhibition network. (a) O,jrklg first-order conditioning 
(Phase I, Trials 1-5), the CSl cell exl~blte firl~-order con- 
ditioning. During Phase II (Trials 6-15), the EPSPs p r i e d  
by CS2 exhibit an lncremm in IzlrenIth Ct~ to second-order 
conditioning. (b) The output of the ~ neurone and ill. 
cilitatory neuron iS similar to t h a t ~ i n F l g u r e  4b.There 
are no significant differences be tw l~  trio output ofthls sim- 
ulation and that of Ftgure 4 becamm, in ~ tothe block- 
ing paradigm, the influenceof t h e ~  neurons is mln- 
imal in the second-order conditioning;paradigm. Output of 
the Inhibitory neurons are not shown. The threlhOId of both 
the fecititetory neuron and Inhibitory neurons was 1050. 
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With the lateral inhibition network it was not nec- 
essary to have a large difference in strength between 
the CS1 + and C S 2 -  cells. Furthermore,  the con- 
straints on the ISI functions and on the properties 
of the facilitatory neuron were less stringent. The 
lateral inhibition network demonstrates that it is the- 
oretically possible for a network to simulate second- 
order conditioning and blocking even though the ele- 
ments exhibit nonassociative enhancement and have 
a relatively modest difference between nonassocia- 
tive and associative strength. 

5. GENERAL DISCUSSION 

The original single-cell model described by Gingrich 
and Byrne (1985, 1987), when implemented into the 
circuit suggested by Hawkins and Kandel (1984), can 
simulate either second-order conditioning or partial 
blocking, but not both with a single set of parame- 
ters. The key parameter  is the threshold of the fa- 
cilitatory neuron. To obtain both second-order con- 
ditioning and blocking with a three-cell network, we 
found that there must be at least a 100% difference 
in strength between the CSI + and C S 2 -  cells. This 
can be understood intuitively, since in order to obtain 
reasonable blocking, the facilitatory neuron must be 
able to distinguish between the control CS1 - / C S 2 -  
and experimental CS1 + / C S 2 -  compound stimuli. 
If the threshold of the facilitatory neuron is between 
the strengths of the CS1 - / C S 2 -  and CS1 + / C S 2 -  
compounds, it can make the distinction between a 
control and experimental blocking paradigm. To ob- 
tain second-order conditioning, however, the thresh- 
old of the facilitatory neuron has to be below the 
strength of the CS1 - cell. Thus, threshold must be 
above C S 1 - / C S 2 -  s t rength and below C S I +  
strength. It follows that if the connection of the CS1 + 
cell is not at least twice as strong as that of the CS2 - 
cell, it is not possible to obtain both significant sec- 
ond-order conditioning and blocking. Thus, the orig- 
inal model of the sensory neuron when incorporated 
into a three-cell network was unable to perform rea- 
sonable simulations of blocking, in part, due to the 
constraints imposed by the empirical data in which 
the strength of a CS+ cell was not 100% greater 
than that of the C S -  cell. Interestingly, most of the 
empirical data on associative neuronal plasticity in 
Ap&sia  have not shown increases of more than 100% 
in the strength of a CS + cell in relation to a C S -  
cell (Buonomano & Byrne, 1990: Carew, Hawkins, 
Abrams & Kandel, 1984; Hawkins et al., 1983; Wai- 
ters & Byrne, 1983). The same holds true for asso- 
ciative plasticity in the hippocampus (Gustafsson & 
Wigstr6m, 1986: Kelso, Ganong & Brown, 1986; 
Larson & Lynch, 1986: Sastry, Gob & Auyeung, 
1986). The importance of factors such as the mag- 
nitude of the change in associative strength in our 

simulations stress the point that it the purpose of a 
model is to provide insights into biological infor- 
mation processing and to test hypotheses on the 
mechanisms underlying learning, it may prove es- 
sential to maintain network parameters within phys- 
iological ranges. 

An unexpected result of our simulations was that 
even though the three-cell network with the modified 
single-cell model neuron displayed a negatively ac- 
celerating acquisition function, it was able to simu- 
late complete blocking with a three-cell network. As 
shown by Gluck and Thompson (1987), a difficult 
aspect of simulating complete blocking is that during 
Phase II, the C S 2 -  cell should not undergo any 
associative plasticity, but the CS1 + cell must undergo 
associative plasticity in order to counterbalance ex- 
tinction. There is an intrinsic difficulty in preventing 
the conditioning of the C S 2 -  cell but not of the 
CS1 + cell with the three-cell network. Gluck and 
Thompson (1987), and Hawkins (1989a,b) have shown 
that in a system with a sigmoid acquisition curve, this 
difficulty can be overcome. With a sigmoid acquisi- 
tion curve the rate of change of synaptic strength as 
a function of training is close to zero at both the 
initial (naive) phase of conditioning and at the 
asymptotic phase of training. Thus, both a trained 
CS1 + and a naive C S 2 -  cell can receive small 
amounts of associative plasticity and maintain a 
steady-state strength. In contrast, a negatively ac- 
celerating acquisition function has different rates of 
change at its initial (maximal rate of change) and 
asymptotic phases (tending to zero). In order to ob- 
tain complete blocking with this type of acquisition 
curve, the CS2 - cell can not undergo any associative 
plasticity, since its rate of change is much higher than 
that of the CS1 + cell. Otherwise, no matter how 
little associative plasticity the C S 2 -  cell undergoes, 
it would eventually "'catch up" to the CS1 + cell. 
Thus, there has to be a state-dependent process by 
which associative plasticity occurs in the CS + cell, 
but not in the C S -  cell. In our model this state- 
dependent plasticity emerges because the condi- 
tioned cell has a faster rate of influx of Ca e ~, due to 
broader spikes. Therefore,  the CS + cell can undergo 
associative plasticity within a time period ineffective 
for conditioning of the C S 2 -  cell (see section 3.2). 
The finding that the modeled sensory neurons of the 
three-cell network exhibited state-dependent con- 
ditioning, which improved the simulations of block- 
ing, was interesting since less detailed models do not 
capture this phenomenon.  One of our initial objec- 
tives was to examine whether there are any quali- 
tative differences among models that simulate neural 
processes at different levels of description, We found 
that a finer level of description may be important, 
because subtle properties of the network can emerge 
from the details of the subcellular processes. 
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FIGURE 13. Simulation of blocking with the lateral inhibition 
network. (a) During Phase I, both the CSl and CS2 ceils 
exhibited the same degree of plasticity seen in the three'cell 
network with the original single-cell model (e,g., Figure 6a), 
During Phase II, the CS2 cell exhibited blocking. Although 
the CS2 cel l  exhibited some associative plasticity, it re- 
mained at an asymptote below that observed in the control 
paradigm (dotted line). (b) The activities of the elements are 
similar to those in Figure 6b, although, the EPSP produced 
by SN2 is not as enhanced in Trial 10. Blocking is achieved 
because during Phase II (Trial 6) the CS1 cell activated not 
only the facilitatory neuron but IN1, which blocked associ- 
ative plasticity in the CS2 cell. IN traces are not shown. The 
threshold of both the fecilitatory neuron and inhibitory neu- 
rons was 1050. 

In contrast to previous models of classical con- 
ditioning that predict either a negatively accelerating 
or sigmoid acquisition function, our model can sim- 
ulate both types of acquisition functions depending 
on the ISI. Behavioral data of classical conditioning 
in vertebrates also show that both sigmoid and neg- 
atively accelerating acquisition curves are observed 
during first-order conditioning depending on the ISI 
(Schneiderman & Gormezano,  1964; Schneiderman, 
1966). It should be noted that our model as well as 
most models proposed to date address forms of clas- 
sical conditioning in which the CR and UR are sim- 
ilar in nature and in which the functional ISis are on 
the order of a few seconds. It will be of interest to 
see how well, if at all, the present models generalize 
to forms of classical conditioning in which the CR 

does not mimic the UR and/or those forms of clas- 
sical conditioning in which ISis on the order of hour~ 
can be effective. 

The lateral inhibition network proved to be more 
robust than the three-cell network m that i~ ~imu- 
lated second-order conditioning and blocking over a 
broader range of network parameters. For example. 
it was not necessary that the Ct,,- cell be twice a~ 
strong as a C S -  cell. In the lateral inhibition net-- 
work. blocking was achieved by a similar mechanism 
as in a model suggested by Grossberg and I_.evine 
11987 i. CS representations compelc among each other 
for reinforcement. Once the (S1 celi has been cou.. 
ditioned, il will inhibit plasticit~ m the naive ( '$2 
cell. via latmal inhibition. In contrast lo the three- 
cell network, the lateral inhibition network is capable 
of simulating second-order conditi~ming and block- 
ing to a large extent as a result c,f circuit properties 
rather than b~ the specific construct ol the elements. 
It appears that the features of the individual elements 
become less important as the number of c~rcuit eLe- 
ments increases Isce also Tesaur,~. 19881. 

Previous work has shown thai ~nlall neural nei- 
works composed of simple inpul output functions 
and that utilize simple learnine rules are able to sim- 
ulate classical conditionim, as wctl as some higher- 
order features of classical conditioning tGluck & 
Thompson. 1987: Hawkins. iDNga.b-Klopf. 1988: 
Sutton & Barto. 198l. 19cXB. Here wc extended these 
observations tw showing that the ~atne holds true 
when the construct of the elements better reflects the 
physiological properties of the actual neurons, ltow- 
ever. it is clear from our smmlali.ms that m order 
for these networks to model secured-order condition- 
ing and blocking, certain specific constraints per- 
taining to the propemes  of the elements have to be 
satisfied. Ultimately. these constraints may be used 
for testing hypotheses for the mechanisms underlying 
associative learning. For example, one would predict 
that in order for the Hawkins and Kandel hypothesis 
to be biologically plausible there should be large m- 
creases m the strength of the ( ' S -  cell and rapid 
accommodation I hundreds of milliseconds) of the fa- 
cilitator~ process. 

A critical issue is how robust are these lnodels. 
Will the~ continue to s~mulate .,.econd-order condi- 
uoning and blocking when simulations are performed 
with networks in which a large number of CS cells 
arm present and any celt or combination thereof can 
be activated by a CS? It may appear that the type 
of networks addressed in this paper would not be 
able to account for these same features of associative 
learning when either a single cell or multiple cells 
can be activated by a CS since the thresholds ot cer- 
tain elements can play a critical role in the model. 
These networks, however, present an element of  sell- 
organization m that multiple compound CSs share 
the total CS strength. For example, m the modified 
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three-cell network, when conditioning a compound 
stimulus that consisted of two CSs, each CS asymp- 
totes at approximately 50% of that observed when 
conditioning of a single CS. Thus, the strength of a 
CS is approximately the same independent of the 
number of cells activated by that CS. A necessary 
condition, however, is that there be a large difference 
in strength between a C S -  and a CS + cell, other- 
wise a small number of C S -  cells can activate the 
facilitatory neuron. 

Other higher-order features of conditioning such 
as contingency, conditioned inhibition, and some nu- 
ances of blocking, such as unblocking (Dickinson, 
Hall & Mackintosh, 1975), do not readily emerge 
from any of the above networks. Further assump- 
tions would be necessary to account for these phe- 
nomena. Future questions that need to be addressed 
are whether these higher-order features of condi- 
tioning emerge from large network properties or from 
specific properties of individual neurons. 
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A P P E N D I X  

The equations used for the first (unmodified single-cell) model of 
this paper  are presented below. For additional details see Figure 
1 and Gingrich and Byrne 11985, 1987). 

D y n a m i c s  o f  C a  z+ 

Ic~, = A • B .  K(, ( A l l  

A = 1 - e x p ( ' - t d T , ) ,  (A2) 

B = C .  exp(-t~/T,) ,  (A3i 

i ( i B ' t  cxp 

t - K, , (1 M ( ' ;  

I.; ( h 

a~ .L t t~.. 

t 

7~ 

( \S i  

kT) 

D y n a m i c s  o f  T r a n s m i t t e r  M o b i l i z a t i o n  

1 , (  ( h 

{.,, 

- i P W v l  - T - 7 - ~ ) - 7  = = l  

dPVM K, 

dt J 1 M, ( 7 )  
t ' V M .  i - - / \  

fL 

K 

[20{1, (( ( 

( { 

d( 
. . . .  ~t- ,, t' t-~ 

[/ 

d (  , 
• 1 .  I- i 

tl'; 
,I V,) 

,Al~h 

A 12, 

t : \  14 

\14~ 

D y n a m i c s  o f  c A M P  

In the absence o~ acttvltx m the FN 

d ( ,  ~vr 
I ( ,,,~ 

i l l  

In the presence ol activity m the FN: 

tlc< x~u 
( ..... 7 ' , , , , . )  - K.,-  (,' 

dt 

7 ,,i,.} 

- c  O ) .  

IAISl  

,A lb )  

R e l e a s e  o f  T r a n s m i t t e r  

Spike duration - 0.l)(/3 - ,~, - ( ~p) .  

7,  (<. ~'r.. [ K'J 

(AI7!  

, A 181 

V a l u e s  a n d  D e f i n i t i o n s  o f  C o n s t a n t s  

( ' ,  100 
K, 1030 
K~, 0.388 
Kl,c 1 . 5  111 
K~, 53611 

K~ 21.0 
Ks, ~ Ill 

K~, 3.1(~ 
K, 35.O 
K ~< 16! R ) 

Kt 2907 
K,,j) 0 . 0 0 1  
M~ ( I. 00t)8 

M,, 0.(175 

Mt 79(1.0 
V l 2.83 
Ns 1.75 
T~ I).001 

7" AMP k)l" 11[ ] 

7] tl.44 

stead,, state ~atuc oI ( ,  
c o n s t a n t  f o r  ( ' a : "  c u r r e n t  

diffusion consiant  [or C a  
constant foi sfJikc duration 
constant for ( ' a :  -dependent ,,vnthesis 
ot cAMP 
maximal rate ctf last mobil izanon 
constant  for cAMP-dependen t  mobi- 
lization 
constant lor t ransmit ter  release 
maximal rate of slow mobilization 
constant  for Ca: - - independent  synthe- 
sis of cAMP 
constant  for ('a- uptake 
constant  lor diffusion of transmitter  
concentrat ion constant  for fast mobi- 
lization 
concentration constant  lor slow mo- 
bil ization 
concentration constant  for Ca" '  uptake 
Hill coefficient for fast mobilization 
Hill coefficient lor slow mobilization 
u m e  constanl for activation of  Ca-" 
channel 
time constant  ot cAMP 
time constant  lor inactivation of Ca 
channel 
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f~ I5.6 

T, 213.{) 
E 2.15 
V~ 1.0 
¼ 6.O8 

time constant for recovery from inac- 
tivation of Ca > channel 
time constant for slow mobilization 
volume of Ca :~ compar tment  
volume of releasable pool 
volume of storage pool 

Initial Values and Definitions of Variables 

,t (I activation of C a :  channel 
B 1 inactivation of Ca:* channel during spike 
B' 1 value of B at end of a spike 
( '  1 recovcry from inactivation of Ca: '  channel 
('~, () concentralion of C a"  
( ,  \v~, 0 concentration of cAMP 

CR 
C, 
F, 
FcAMP 

F~)~ 
F, 
El, 
It ~, 0 
PVM~ 0 

¢~ 0 
t: 0 

All time 

100 concentration of transmitter  in releasable pool 
100 concentration of transmitter  in storage pool 
0 Ca2' -dependent  mobilization 
0 cAMP-dependent  mobilization 
0 diffusion of transmitter  
0 diffusion of Ca-" 
0 synthesis of transmitter 
0 uptake of C a "  

Ca: + current 
potential for mobilization 
accommodat ion of facilitatory neuron 
time after beginning of spike 
time after last spike 
release of transmitter 

constants are given in seconds. 


