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Substantial evidence has established that the cerebellum plays an im- 
portant role in the generation of movements. An important aspect of 
motor output is its timing in relation to external stimuli or to other com- 
ponents of a movement. Previous studies suggest that the cerebellum 
plays a role in the timing of movements. Here we describe a neural 
network model based on the synaptic organization of the cerebellum 
that can generate timed responses in the range of tens of milliseconds 
to seconds. In contrast to previous models, temporal coding emerges 
from the dynamics of the cerebellar circuitry and depends neither on 
conduction delays, arrays of elements with different time constants, 
nor populations of elements oscillating at different frequencies. In- 
stead, time is extracted from the instantaneous granule cell population 
vector. The subset of active granule cells is time-varying due to the 
granule-Golgi-granule cell negative feedback. We demonstrate that 
the population vector of simulated granule cell activity exhibits dy- 
namic, nonperiodic trajectories in response to a periodic input. With 
time encoded in this manner, the output of the network at a particular 
interval following the onset of a stimulus can be altered selectively 
by changing the strength of granule + Purkinje cell connections for 
those granule cells that are active during the target time window. The 
memory of the reinforcement at that interval is subsequently expressed 
as a change in Purkinje cell activity that is appropriately timed with 
respect to stimulus onset. Thus, the present model demonstrates that 
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a network based on cerebellar circuitry can learn appropriately timed 
responses by encoding time as the population vector of granule cell 
activity. 

1 Introduction 

Generating movements inherently involves producing appropriately 
timed contractions in the relevant muscle groups. Accordingly, an im- 
portant aspect of motor control is the timing of motor commands in 
relation to internal (Le., proprioceptive cues) and external stimuli. One 
clear and experimentally tractable example of the timing of responses 
with respect to an external stimulus is Pavlovian conditioning of eyelid 
responses. Learned responses are promoted in this paradigm by paired 
presentation of a cue or conditioned stimulus (CS) and a reinforcing un- 
conditioned stimulus (US). For example, the presentation of a tone (the 
CS) is reinforced by the copresentation of a puff of air directed at the 
eye (the US). This promotes the acquisition of learned eyelid responses 
that are elicited by the CS. These learned eyelid movements are delayed 
so that they peak near the onset of the potentially harmful US (Schnei- 
derman and Gormezano 1964; Gormezano et ul. 1983). Previous studies 
have shown that the timing of the eyelid response is learned and that the 
underlying neural mechanism involves temporal discrimination during 
the CS (Mauk and Ruiz 1992). Smce appropriately timed responses can 
be generated for CS-US intervals between 80 and 2000 msec, the neu- 
ral mechanism appears to be capable of temporal discrimination in this 
range. 

Very little is known about how and where the nervous system encodes 
time. There is evidence that neurons can use axonal delays to detect 
temporal intervals. For example, axonal conduction delays appear to 
contribute to the detection of interaural time delays (Carr and Konishi 
1988; Overholt et ul. 1992). Furthermore, theoretical work (Koch et al. 
1983) has suggested that dendritic conduction delays could contribute 
to the detection of temporal delays important for direction selectivity in 
the visual system. In both these instances, however, the relevant time 
intervals are below tens of milliseconds. Braitenberg (1967) suggested 
that the parallel fibers in the cerebellum could function as delay lines 
that would underlie the timing of movements. Given the conduction 
velocity of parallel fibers of approximately 0.2 mm/msec it is unlikely 
that such a mechanism could underlie timing in the tens of milliseconds 
to second range (Freeman 1969). Other models have been presented in 
which intervals above tenths of seconds could be stored by a group of 
oscillating neurons with different frequencies (Miall 1989; Church and 
Broadbent 1991; Fujita 1982; Gluck et al. 1990). As of yet, however, no 
such population of neurons has been described. 
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It has been suggested that the cerebellum may play an important 
role in the timing of movements (Braitenberg 1967; Freeman 1969; Eccles 
1973), in addition to being an important component for the learning of 
movements (Marr 1969; Albus 1971; Fujita 1982; Lisberger 1988). Indeed 
it has been shown that while cerebellar cortex lesions do not abolish 
the conditioned response, the timing of the responses is disrupted (Mc- 
Cormick and Thompson 1984; Perrett et nl. 1993). Whereas numerous 
studies indicate that output from the cerebellum via cerebellar nuclei is 
required for Pavlovian eyelid conditioning (Thompson 1986; Ye0 1991; 
however, see Welsh and Harvey 1989). One class of cerebellar afferents 
(mossy fibers) appears to convey to the cerebellum the presentation of the 
CS and a second class of cerebellar afferents (climbing fibers) appears to 
convey the presentation of the US (e.g., see Thompson 1986). These data 
suggest that (1) Pavlovian conditioning is a relatively simple, experimen- 
tally tractable paradigm for the study of the inputioutput properties of 
the cerebellum, (2) the cerebellum is necessary for the appropriate timing 
of conditioned movements, and thus, (3) Pavlovian conditioning is par- 
ticularly well suited for the study of cerebellar mechanisms that mediate 
the ability to discriminate time with respect to the onset of an internal or 
external stimulus. 

The purpose of this paper is to use a neural network model to test 
a specific hypothesis suggesting how the known circuitry of the cerebel- 
lum could make temporal discriminations and mediate the timing of the 
conditioned response. The model tested here is based on the known cir- 
cuitry of the cerebellum and does not utilize delay lines, assume arrays 
of elements with different time constants, or assume arrays of elements 
that oscillate at different frequencies, but instead shows how the dynam- 
ics of cerebellar circuitry could encode time with the population vector 
of granule cell activity 

2 Structure of the Model 

2.1 Cerebellar Circuitry. In comparison to most brain regions the 
neural circuitry, cell ratios, and synaptic convergence/divergence ratios 
of the cerebellum are fairly well established (Eccles et al. 1967; Palkovits 
etnl. 1971; Ito 1984). The principal six cell types are the granule (Gr), Golgi 
(Go), Purkmje (PC), basket, stellate, and cells of the cerebellar nuclei. The 
two primary inputs to the cerebellum are conveyed by mossy fibers (MF) 
and climbing fibers (CF). Figure 1A illustrates the known connectivity of 
these cells. 

2.2 Classic Cerebellar Theories. Based on the known characteristics 
of cerebellar organization, Marr (1969) and later Albus (1971) proposed 
models of the cerebellum suggesting a mechanism to mediate motor 
learning. In these theories (1) the contexts in which movements take 
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Figure 1: Synaptic organization of the cerebellum. (A) A schematic diagram 
of the known synaptic connections in the cerebellum. Shown in bold and with 
solid lines are the components incorporated into the present computer model. 
(B) A schematic representation of the connectivity in the present model. Small 
representations of the granule (Gr) and Golgi (Go) layers are shown; there 
were lo4 and 900 Gr and Go cells, respectively, in the simulations. The 500 
MFs and single PC are omitted for clarity The arrows and shaded pyramids 
illustrate the spans or regions to which the cells are eligible to make a synaptic 
contact. Within the spans connections are made with a uniform distribution. 
The white cells in each span exemplify cells that receive a synaptic input from 
the presynaptic cell. Thus, the shape of the spans was designed to reflect the 
geometry of the projections of each cell type, whereas the number of cells within 
the span that actually received a connection was a reflection of the convergence 
and divergence ratios of the synaptic connections. 

place are encoded by the population vector of Gr cell activity, (2) the CFs 
convey error signals indicating that the response requires modification, 
and (3)  this CF error signal modifies active Gr i PC synapses such that 
subsequent motor performance in that context is improved. Marr also 
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suggested that the Go cell negative feedback stabilizes the amount of GI 
cell activity which could maximize the discriminability of the contexts. 

2.3 Hypothesis. The hypothesis we test here is an elaboration of the 
Marr/Albus scheme which suggests that due to (1) the dynamic interac- 
tions between Gr and Go cell populations and (2) the complex geometry 
of their interconnections, the population vector of granule cell activity 
exhibits time-variant trajectories that permit both stimulus and tempo- 
ral discriminations (see Mauk and Donegan 1991). Thus, the population 
vector of Gr cell activity encodes both the particular MF input pattern 
and the time since its onset. A particular periodic MF input pattern will 
activate a subset of Gr cells which will activate a subset of Go cells; these 
in turn will inhibit a second, partially overlapping subset of Gr cells. The 
Gr + Go + Gr negative feedback loop will create a dynamic, nonperi- 
odic population vector of Gr cell activity even when driven by a periodic 
input pattern of ME Thus, the population vector of Gr cell activity would 
encode not just the constellation of stimuli impinging on the organism, 
but also the time since the onset of the stimuli. In a manner consistent 
with the Marr/Albus theories, a given subset of Gr cells and thus a par- 
ticular interval can be stored by changing the strength of the Gr i PC 
connection of active Gr cells. The retrieval of the interval is expressed as 
a change in the activity level of the PC. 

2.4 Neural Network. The neural network consisted of lo4 Gr cells, 
900 Go cells, 500 MF inputs, and one PC. The architecture is illustrated 
schematically in Figure 1B; the 500 MFs and the single PC are omitted for 
clarity. Each Gr cell received excitatory synaptic inputs from three MFs 
and inhibitory inputs from three Go cells. Each Go cell received excita- 
tory inputs from 100 Gr cells and 20 MFs. The PC received inputs from 
all lo4 Gr cells. In scaling the network to computationally feasible dimen- 
sions, it is not possible to maintain both the empirically observed Gr/Go 
cell ratios and convergence/divergence ratios. The biological Gr/Go cell 
ratio is approximately 5000/1, and the Gr convergence/divergence ratio 
is approximately 0.4 (4/10, Le., each Gr cell receives input from 4 Go 
cells and sends contacts to 5-10 Go cells; Eccles 1973; Palkovits et nl. 
1971). Thus, a network with lo4 Gr cells should have only 2 Go cells, yet 
each of the Gr cells should contact approximately 5-10 Go cells. The un- 
derlying assumption we employed in making the compromise between 
cell ratios and convergence/divergence ratios was that the latter is more 
important. Thus, the convergence/divergence ratios for the Gr and Go 
cells were maintained within an order of magnitude of observed experi- 
mental values. In the model the Gr/Go ratio was 11.1 (104/900) and the 
Gr convergence/divergence ratio was 0.33 (3/9). 
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The Gr and Go cells were simulated as modified integrate and fire 
elements. For example, the voltage of each Go cell (p was determined 
by 

A spike (Sp )  was generated if threshold was reached. 

(2.2) 

where Thry  = spike threshold for Go cell i. Synaptic currents were sim- 
ulated with an instantaneous rise and an exponential decay. All inputs 
of a particular type are summed into a single current that saturates at 
1.0 and decays at the rate of 7 .  Thus the MF + Go cell synaptic current 
&f" MF) is determined by 

Go:MF MF 
(2.3) dg, = sfF W C , M F  (1 - gGo:MF) gYMFrCa:MF 

dt 

where SrF represents a spike in a MF, l@o:MF is the synaptic weight of 
the MF synapses, and 7"OXMF is the decay time constant. 

A relative refractory period and spike accommodation was simulated 
by increasing threshold to MaxThr"' after each spike with a subsequent 
exponential decay to the initial value with a time constant of rGo:Thr. The 
dynamics of each Gr cell was controlled by similar equations except each 
Gr cell received an excitatory and an inhibitory synaptic current, gGr:MF 
and g"""", respectively The values and definitions of the constants are 
given in Table 1. 

The single PC received input from all Gr cells in the network. Initially 
all Gr cells were connected to the PC with the same weight. During the 
first presentation of the stimulus the weights of the Gr + PC connec- 
tions for all Gr cells active within a target window were decreased. This 
decrease in synaptic weight during a particular time window simulates 
the long-term depression (LTD) of the parallel fiber to PC connection 
produced by coactivation of parallel and climbing fibers (It0 et a/ .  1982; 
Linden et a/. 1991). The ability of the network to generate an appro- 
priately timed response was then tested by monitoring the PC activity 
during a second presentation of the stimulus. Thus the voltage of the 
PC represented the weighted summed activity of all the Gr cells in the 
network with a time constant of 2.5 msec. 

In certain versions of the network a conduction delay was incorpo- 
rated in the Gr + Go connection. Since the delay did not affect the results 
in a significant manner and to stress that timing in the network emerges 
from the dynamics of the Gr + Go i Gr feedback loop the simulations 
presented here did not include conduction delays. 
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Table 1: Definitions and Values of Constants.a 

Dean V. Buonomano and Michael D. Mauk 

Decay time constants 

rGrXMF MF - Gr synaptic conductance 2.86 
5.0 TGr:Go 

T ~ ~ : ~ ~  MF - Go synaptic conductance 2.87 
2.86 7Go:Gr 

T ~ ~ : ~ ~  Gr threshold decay 1.7 

Go + Gr synaptic conductance 

Gr - Go synaptic conductance 

T~~~~~ Go threshold decay 2.0 

Cellular parameters 

beak Leak equilibrium potential -60 
E ,  EPSP equilibrium potential 0 
Einh IPSP equilibrium potential -80 
gC':leak Leak conductance for Gr .07 
gc0:leak Leak conductance for Go .07 

Synaptic parameters 

GZMF Synaptic weight of MF + Gr 0.15 
@:Go Synaptic weight of Go + Gr 0.15 
WoZMF Synaptic weight of MF - Go 0.007 
Wo:Gr Synaptic weight of Gr - Go 0.008 

Threshold parameters 

ThrGr Gr cell minimum threshold -40 
T h P  Go cell minimum threshold -35 
MaxThr" Maximum Gr threshold -35 
MaxThr" Maximum Go threshold -25 

'In the table and equations the first superscript refers to the postsynaptic cell that the 
constant or variable applies to, whereas the second superscript refers to the presynaptic 
cell or to a particular variable. 

Input to the network was conveyed by 500 MF. In the simulations 
described here the presentation of a CS was represented by activation of 
20% of the MFs at  a frequency of 100 Hz. Driving the network with a con- 
stant frequency input insured that any timing exhibited by the network 
was a result of the intrinsic dynamics of the circuit. 

3 Simulations 

3.1 Timing. Figure 2 illustrates the ability of the network to learn 
a temporal discrimination when driven by the MF input. Following a 
baseline of low background activity, a subset of mossy fibers was acti- 
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Figure 2 Results from a typical simulation of a Pavlovian conditioning trial 
in which temporal coding is expressed in the PC activity Shown along the 
top is the percent of MFs active each time bin with the onset of the simulated 
CS marked by the increase in MF activity at time zero. During each trace 
the network is initially silent due to the absence of MF activity To provide 
"background" activity, 5% of the MFs were turned on at t = -45, and at CS onset 
( t  = 0) an additional 20% of the MFs were activated at 100 Hz (the phase of each 
MF action potential was random). The lighter continuous trace represents PC 
activity in the initial training trial in which a climbing fiber input was simulated 
by decreasing to zero the strength of the GI - PC connections that spiked three 
or more times between t = 200 and 205 msec. The darker continuous trace 
shows a subsequent test trial in which no US was presented. The retention 
of the temporal interval behween CS and US is expressed as a decrease in PC 
activity whose onset precedes and whose peak occurs near the time at which 
the US was previously presented. Finally, a raster plot showing the activity of 
600 of the Gr cells as a function of time during the trial is superimposed. 

vated as a hypothetical CS presented to the network (total MF activity 
is shown in the upper panel). The lower panel shows the output of the 
network as represented by the activity of a PC during two trials. Ac- 
tivity in the PC is proportional to the weighted sum of active Gr cells. 
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Initially all weights were equal. The initial peak corresponds to the ac- 
tivation of Gr cells in the presence of very little Go cell inhibition. The 
Gr + Go + Gr feedback establishes a more or less constant amount of 
total Gr cell activity Note that at t = 0 a 5-fold increase in MF activ- 
ity did not increase PC activity. Although at any point in time there is 
approximately a constant number of Gr cells active, the subpopulation 
of active cells is distinct. This is demonstrated in the raster plot of a 
sample of Gr cells superimposed on Figure 2. In the first "training" trial 
(lighter trace) a US was simulated at t = 200 by decreasing the strength 
of the Gr - PC connections for Gr that were active between t = 200 
and t = 205. These changes are reflected in the decrease in PC activity 
In a subsequent "test" trial in which no US was presented (bold trace), 
the retention of the previous training is expressed by the decrease in PC 
activity that peaks near t = 200. This appropriately timed decrease in 
PC activity occurs because the subset of Gr cells active around t = 200 
was (1) identical to the subset active at t = 200 on the training trial and 
(2) is different from subsets active at other post-CS intervals. Note that 
there is an overall decrease in PC activity after training. This decrease 
occurs because the subset active at t = 200 (and that was reinforced by 
the US) has a low percentage of elements in common with the subsets of 
Gr cells active at other times. If we consider the population of Gr cells 
as a binary vector (spike/no spike) with lo4 dimensions, then each time 
step will define a point in Gr cell state space. Throughout a stimulus 
these population vectors will describe a trajectory in this Gr cell state 
space where different times during the stimulus are encoded by different 
points along the trajectory. Thus, the degree of overlap (or the average 
distance in Gr cell state space) determines the signal/noise ratio. 

3.2 Ability to Store Multiple Intervals. Simulations similar to those 
shown in Figure 2 demonstrate that the network is capable of storing 
multiple intervals in response to the same or different stimuli. Figure 3 
illustrates the ability of the network to simulate two different intervals in 
response to two different stimuli. Each trace represents the response of 
the network after training with different input stimuli (see figure legend). 
The first trace (light line) represents the first stimulus that was trained 
with the US presented 150 msec following the onset of the CS and the 
second trace (dark line) represents the second stimulus which was trained 
with a CS-US interval of 350 msec. 

3.3 Sensitivity to Noise. A crucial aspect of any realistic biological 
model is its ability to perform in the presence of noisy inputs. In the con- 
text of the present simulations noise refers to trial-to-trial variation in the 
initial (pre-CS) state of the model and in the MFs activated by the CS as 
well as variability in various properties of the individual elements, such 
as threshold, transmitter release, etc. This noise has the potential deleteri- 



Timing and the Cerebellum 47 

2 
2 
s 
Q 

I ._ 

v 

x 
> 
- ._ 
._ - 
2 
a, 
c 

S 

.- ._ 
Y, 
a 

-50 50 150 250 350 450 550 650 

TIME (ms) 

Figure 3 Performing multiple intervals. Simulations similar to those shown 
in Figure 2 demonstrating that the network is capable of both stimulus and 
temporal discriminations. The two PC traces represent post-training responses 
elicited by different CSs (different subsets of MFs were activated for each), 
each of which was previously reinforced by the US, but at different intervals. 
The light trace shows the response elicited by the CS previously reinforced at 
150 msec and the dark trace was reinforced at 350 msec. 

ous effect of reducing the trial-to-trial consistency of the trajectory of the 
Gr population vector elicited by CS presentations. For example,' if each 
presentation of the same CS promoted a completely different trajectory of 
the Gr population vector, then the ability to learn an appropriately timed 
response would be abolished. In the simulations presented thus far no 
noise was present; the pre-CS state of the network and the CS-evoked MF 
inputs were identical for each CS presentation. However, since dynamic 
systems characteristically show sensitivity to noise, the introduction of 
small ermrs (noise) leads to increasing divergence of the trajectory. 

As a first step toward addressing this issue we have analyzed how 
the injection of small amounts of noise affects the ability of the network 
to reproduce a CS-evoked trajectory in the Gr population vector (Fig. 4). 
Noise was introduced by altering the activity of five Gr cells at t = 150 
during a CS that had been trained previously. As shown in Figure 4, the 
introduction of this noise attenuated the PC response and this attenuation 

I 
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Figure 4: Sensitivity of the network to noise. The lower panel shows PC ac- 
tivity during three separate test trials. Prior to each test hial the network had 
been trained using a reinforced trial where the US was presented at 125, 175, 
or 225 msec, respectively, for the three traces. During the test trials, noise was 
injected at the time shown (t = 150) in the form of spurious activity in five 
randomly chosen GI cells. The top panel shows the overlap between the Gr 
cell population vector in the presence and absence of noise. Within approx- 
imately 100 msec from the injection of noise (t  = 250) the overlap decreases 
to chance. The effect of this decrease on the retention of previous training is 
illustrated in the PC traces. As the overlap in population vectors of GI activity 
between training and test trials decreases, the ability to generate the response 
deteriorates. Overlap is defined as 1- (Hamming distance t number of active 
GI cells), where the Hamming distance is the number of mismatches between 
the two population vectors. 

increased with the time between noise injection and the response. This 
occuls because the spurious Gr activity changes the trajectory of the net- 
work in Gr state space. Since the small initial change leads to further 
changes in the trajectory, the divergence from the normal trajectory in- 
creases with time. With small changes in the trajectory the learned PC 
response is attenuated, but eventually the divergence is sufficient to elim- 
inate the response completely. The rate at which trajectories are altered 
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by the introduction of noise can be illustrated by plotting the overlap 
of Gr cell states during two CS presentations, one with noise and one 
without (Fig. 4). Before the injection of the noise the overlap between 
the two Gr cell population vectors is 100%. With the injection of noise 
the overlap decreases within 100 msec to a baseline level of 10-15%. At 
this point the ability to generate timed responses is lost. Note that the 
speed with which the trajectories diverge following noise injection-that 
is, the slope of the overlap function--can be used as a measure of noise 
sensitivity (see next section). 

3.4 Effects of the MF - Go Connection on Timing and Sensitivity to 
Noise. The ability of the network to make temporal discriminations was 
fairly insensitive to most parameters. The parameters best analyzed were 
the connection strengths from the MF to Gr cells ( WEMF) and the recip- 
rocal connection strengths between the Gr and Go cells t@o:cr). 
Within reasonable boundaries timing was not dramatically affected by 
these parameters, although changes in the signal/noise ratio and the ab- 
solute number of cells active in the network were observed. We were 
particularly interested in the MF to Go cell connection (M)GoZMF), since 
neither in our model nor in previous cerebellar models is the functional 
consequence of this connection entirely clear. To obtain insights as to the 
possible function of this connection we performed a paramehic analysis 
of the effect of the strength of the MF + Go connection on temporal 
discrimination and on sensitivity to noise. 

Figure 5 illustrates the effect of different values of the MF + Go 
connection on temporal discrimination and sensitivity to noise. We define 
temporal discrimination as the ability to generate a temporally specific 
response to the CS. We observed that temporal discrimination is best 
with low WZMF or when the MF i Go connection is omitted (PMF = 
0.0). With higher WaMF values temporal discrimination deteriorates. 
Conversely the network is more resistant to noise injected into the Gr 
cells with higher WzMF values. At low T@":MF the dynamics of the 
network are determined mostly by the Gr 4 Go 4 Gr loop, resulting 
in an unstable but highly variable Gr cell population trajectory (robust 
temporal discrimination but high sensitivity to noise). At high 
values the periodic MF input can entrain the network by dominating the 
input to the Go cells, resulting in little or no temporal discrimination but 
better resistance (low sensitivity) to Gr cell noise. Thus the MF + Go 
cell connection may play a role in making the dynamics of the network 
more resistant to Gr cell noise, and the effectiveness of the MF + Go cell 
connection in the cerebellum may reflect a compromise between temporal 
discrimination and resistance to noise. It should be stressed that this 
conclusion pertains to instances in which the noise is present in the Gr 
cell activity. It remains to be determined whether the same holds true in 
the presence of noisy MF inputs. 
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Figure 5: The influence of the MF - Go synaptic strength on the sensitivity of 
the network to noise and on a measure of the ability of the network to perform 
temporal discriminations. The injection of noise was identical to the simulations 
shown in Figure 4. With low MF i Go synaptic strength (or no connection, 
WozMF = 0.0) the quality of temporal discrimination or timing was relatively 
high but resistance to noise was relatively low. As the MF i Go connection was 
increased, noise resistance increased, but temporal discrimination decreased. 
Resistance to noise was defined as the reciprocal of the slope (absolute value) 
of the overlap function shown in Figure 4. Thus, small values reflect a sharp 
slope of the overlap function, indicating sensitivity to noise. The timing index 
was defined as the amplitude of the learned decrease in PC activity minus 
the decrease in the baseline activity following learning. This difference was 
then normalized to the prelearning baseline activity. Thus the timing index 
ranges from 0 (no temporal discrimination) to 1 (maximal amplitude of the 
timed learned response with no change in baseline). 

4 Discussion 

We have demonstrated that an artificial neural network whose circuitry 
is based on the synaptic organization of the cerebellar cortex is capable 
of temporal discriminations and the generation of appropriately timed 
responses over intervals of tens of milliseconds to seconds. In this net- 
work time is encoded in the population vector of GI cell activity4nring 
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a stimulus the subset of granule cells that is active varies in a characteris- 
tic manner. To use Gr cell dynamics to encode particular time windows, 
there has to he an efficient way to select or to tag the subpopulation of Gr 
cells that encode a particular time window. It turns out that LTD gated 
by climbing fiber inputs to PCs provides an effective way to accomplish 
this. However, it is important to note that the timing mechanism we 
propose does not necessarily require LTD, any plasticity rule based on 
temporally correlated climbing fibers and Gr cell inputs would be effec- 
tive. With LTD, storage of a particular interval is induced by decreasing 
the Gr + PC connection strength during the desired time window. The 
retrieval of the interval is expressed as a decrease in the activity level 
of the PC. Any particular time window can he encoded in this manner 
because the population of active Gr cells is dynamic. Chapeau-Blondeau 
and Chauvet (1991) also proposed a model in which time could he en- 
coded by the population of active Gr cells, although their model stresses 
the importance of the parallel fibers functioning as delay lines. 

An interesting feature that emerged from the model is the anticipatory 
response, that is, after training the response begins before the US onset 
and peaks during the US. This type of anticipatory response is observed 
in eyelid conditioning of the rabbit (e.g., Mauk and Ruiz 1992). In the 
model the anticipatory response occurs because the Gr cells that code for 
the US interval tend to have a higher probability of being active shortly 
before and after the US interval. In other words as the Gr cell population 
trajectory approaches the time of US onset the anticipatory response is 
generated. 

The major weakness of the model is its sensitivity to noise. Spurious 
activity in a few Gr cells can degrade the trajectory of the network such 
that within 100-200 msec the population dynamics is altered to a degree 
that the timing signal is lost. Since timing is generated by the dynamics 
of the Gr - Go + Gr loop, and encoded in the population of active Gr 
cells, activity in spurious Gr cells is amplified throughout the network. 
We did not perform a formal mathematical analysis to determine if the 
network was chaotic, although the sensitivity of the network to noise 
suggests that this may he the case. 

It has been proposed (Mauk and Donegan 1991) that sensitivity to 
noise could be responsible for the dependence of Pavlovian conditioning 
on the interstimulus interval (ISI); conditioning requires that CS onset 
precede the US by at least 80-100 msec, hut not by more than 2-3 s 
(the so called IS1 function). Thus acquisition could require trial-to-trial 
consistency in the subset of Gr i PC synapses modified by the US, 
and the IS1 function could reflect a within-trial variation of the across- 
trials CS-evoked trajectory. The present simulations demonstrate that this 
notion might be feasible. Noise injected early in a CS leads to a time- 
dependent increase in the variation of the CS-evoked Gr cell trajectories. 
This increase is consistent with the decrease in conditioning as the IS1 
increases. 
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It is clear that the network presented here is too sensitive to noise 
since changes in a small percentage of Gr cells lead to rapid divergence 
of the Gr cell trajectory and thus loss of timing. There are several factors 
that may contribute to the extreme sensitivity of this network to noise. 
(1) We simulated timing under the worsrcase condition in which the 
network is driven by MF inputs that convey no temporal information. 
It seems likely that the MFs may convey a small degree of temporal 
coding-perhaps some MFs fire tonically to a stimulus while others fire 
phasically at stimulus onset and offset. ( 2 )  The parameters used in this 
model favored robust temporal discrimination at the possible expense of 
resistance to noise. As shown in Figure 5, with increases in the MF t Go 
cell connection strength it is possible to improve the resistance to noise 
and maintain some degree of temporal discrimination. (3) We simulated 
"learning" with a single trial, it may be that with multiple trials the trade- 
off between resistance to noise and temporal discrimination may be more 
forgiving. (4) Aspects of cerebellar physiology not incorporated into the 
network, such as the correct Gr/Go cell ratios or cellular comparhnental- 
ization, may be important. Indeed, preliminary simulations in which the 
excitatory/inhibitory interactions of the Gr cells were compartmentalized 
in each dendrite improved the resistance of the network to noise. 

Several neural-like models have been proposed to account for the IS1 
function and for the learned timing of conditioned responses. For ex- 
ample, Moore and colleagues (Moore et ul. 1986, 1989) presented a neu- 
ral model that used an eligibility period to obtain the IS1 function and 
tapped delay lines to obtain response timing. Grossberg and Schmajuk 
(1989) proposed a model using an array of CS-activated elements with 
different time constants to obtain response timing. Also, Gluck et al. 
(1990) obtained response timing with an array of CS-activated elements 
that oscillate at different frequencies and phases. Clearly, from a compu- 
tational point of view it is not difficult to develop hypothetical systems 
that generate time-varying CS representations. The important questions 
concerning each candidate mechanism are its overall biological plausi- 
bility in general and its ability to map specifically onto the anatomy and 
physiology of particular brain regions. We suggest that the present ap- 
proach differs from previous models in that there are no parameters or 
hypothetical mechanisms included that specifically code for timing or 
the IS1 function. Instead, we have attempted to capture-qualitatively 
if not quantitatively-the basic properties of the organization of certain 
parts of cerebellar cortex. Our simulations show that behavioral proper- 
ties such as response timing and the IS1 function can emerge from this 
organization. 

The present model gives rise to several expectations regarding the 
activity of granule cells that would be elicited by the presentation of a 
particular stimulus: (1) the presentation of a stimulus should elicit activ- 
ity in a subset of granule cells, (2)  the activity in each cell should follow 
the onset of the stimulus by a fairly consistent interval, and (3) assum- 
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ing recordings from a sufficient number of cells, all conditionable inter- 
vals should be represented by activity in at least some cells. Assuming 
again that recordings from a large number of granule cells could be ob- 
tained, the possibility that Pavlovian eyelid conditioning occurs only for 
a limited range of interstimulus interval can be explained by within-trials 
variation in the across-trials consistency of the population vector of active 
granule cells Mauk and Donegan (1991) suggests an additional predic- 
tion: (4) the trial-to-trial consistency in the stimulus-evoked activity in 
the granule cells should vary throughout the stimulus in a manner that 
parallels the ability of different interstimulus intervals to support con- 
ditionins. In particular, as the duration of the stimulus (e.g., the IS11 
increases the trial-to-trial consistency in the stimulus-evoked granule cell 
activity should decrease. Thus, given recordings from a sufficiently large 
subset of granule cells during the presentation of a stimulus, the popula- 
tion vector of the activity of those cells should provide for temporal cod- 
ing throughout the stimulus and the consistency of this temporal code 
should parallel the effectiveness of each interval to support Pavlovian 
eyelid conditioning. While these predictions of the present model are 
quite concrete, we acknowledge the difficult and time-consuming nature 
of the experiments. This further highlights the value of combining bio- 
logically inspired computer simulations with empirical approaches to in- 
vestigate the information-processing mechanisms of the nervous system. 
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